Biblio
Performing a live digital forensics investigation on a running system is challenging due to the time pressure under which decisions have to be made. Newly proliferating and frequently applied types of malware (e.g., fileless malware) increase the need to conduct digital forensic investigations in real-time. In the course of these investigations, forensic experts are confronted with a wide range of different forensic tools. The decision, which of those are suitable for the current situation, is often based on the cyber forensics experts’ experience. Currently, there is no reliable automated solution to support this decision-making. Therefore, we derive requirements for visually supporting the decision-making process for live forensic investigations and introduce a research prototype that provides visual guidance for cyber forensic experts during a live digital forensics investigation. Our prototype collects relevant core information for live digital forensics and provides visual representations for connections between occurring events, developments over time, and detailed information on specific events. To show the applicability of our approach, we analyze an exemplary use case using the prototype and demonstrate the support through our approach.
Current implementations of Differential Privacy (DP) focus primarily on the privacy of the data release. The planned thesis will investigate steps towards a user-centric approach of DP in the scope of the Internet-of-Things (IoT) which focuses on data subjects, IoT developers, and data analysts. We will conduct user studies to find out more about the often conflicting interests of the involved parties and the encountered challenges. Furthermore, a technical solution will be developed to assist data subjects and analysts in making better informed decisions. As a result, we expect our contributions to be a step towards the development of usable DP for IoT sensor data.