Xu, Mengmeng, Zhu, Hai, Wang, Juanjuan, Xu, Hengzhou.
2019.
Dynamic and Disjoint Routing Mechanism for Protecting Source Location Privacy in WSNs. 2019 15th International Conference on Computational Intelligence and Security (CIS). :310–314.
In this paper, we investigate the protection mechanism of source location privacy, in which back-tracing attack is performed by an adversary. A dynamic and disjoint routing mechanism (DDRM) is proposed to achieve a strong protection for source location privacy in an energy-efficient manner. Specially, the selection of intermediate node renders the message transmission randomly and flexibly. By constructing k disjoint paths, an adversary could not receive sufficient messages to locate the source node. Simulation results illustrate the effectiveness of the proposed mechanism.
George, Chinnu Mary, Luke Babu, Sharon.
2019.
A Scalable Correlation Clustering strategy in Location Privacy for Wireless Sensor Networks against a Universal Adversary. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :1–3.
Wireless network sensors are outsized number of pocket sized sensors deployed in the area under surveillance. The sensor network is very sensitive to unattended and remote Environment with a wide variety of applications in the agriculture, health, industry there a lot of challenges being faced with respect to the energy, mobility, security. The paper presents with regard to the context based surrounding information which has location privacy to the source node against an adversary who sees the network at a whole so a correlation strategy is proposed for providing the privacy.
Mutalemwa, Lilian C., Shin, Seokjoo.
2019.
Investigating the Influence of Routing Scheme Algorithms on the Source Location Privacy Protection and Network Lifetime. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :1188–1191.
There exist numerous strategies for Source Location Privacy (SLP) routing schemes. In this study, an experimental analysis of a few routing schemes is done to investigate the influence of the routing scheme algorithms on the privacy protection level and the network lifetime performance. The analysis involved four categories of SLP routing schemes. Analysis results revealed that the algorithms used in the representative schemes for tree-based and angle-based routing schemes incur the highest influence. The tree-based algorithm stimulates the highest energy consumption with the lowest network lifetime while the angle-based algorithm does the opposite. Moreover, for the tree-based algorithm, the influence is highly dependent on the region of the network domain.
Almalkawi, Islam T., Raed, Jafar, Alghaeb, Nawaf, Zapata, Manel Guerrero.
2019.
An Efficient Location Privacy Scheme for Wireless Multimedia Sensor Networks. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1615–1618.
Most of the security algorithms proposed for the sensor networks such as secure routing, data encryption and authentication, and intrusion detection target protecting the content of the collected data from being exposed to different types of attacks. However, the context of the collected data, such as event occurrence, event time, and event location, is not addressed by these security mechanisms and can still be leaked to the adversaries. Therefore, we propose in this paper a novel and efficient unobservability scheme for source/sink location privacy for wireless multimedia sensor networks. The proposed privacy scheme is based on a cross-layer design between the application and routing layers in order to exploit the multimedia processing technique with multipath routing to hide the event occurrences and locations of important nodes without degrading the network performance. Simulation analysis shows that our proposed scheme satisfies the privacy requirements and has better performance compared to other existing techniques.
Li, Qingyuan, Wu, Hao, Liu, Lei, Pan, Bin, Dong, Lan.
2018.
A Group based Dynamic Mix Zone Scheme for Location Privacy Preservation in VANETs. 2018 Third International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–5.
Modern vehicles are equipped with wireless communication technologies, allowing them to communicate with each other. Through Dedicated Short Range Communication (DSRC), vehicles periodically broadcast beacons messages for safety applications, which gives rise to disclosure of location privacy. A way to protect vehicles location privacy is to have their pseudonyms changed frequently. With restrict to limited resources (such as computation and storage), we propose a group based dynamic mix zone scheme, in which vehicles form a group when their pseudonyms are close to expire. Simulation results confirm that the proposed scheme can protect location privacy and alleviate the storage burden.
Tang, Di, Gu, Jian, Yu, You, Yang, Yuanyuan, Han, Weijia, Ma, Xiao.
2018.
Source-Location Privacy Based on Dynamic Mix-Ring in Wireless Sensor Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :327–331.
Wireless sensor networks (WSNs) have the potential to be widely used in many applications. Due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized interception and detection. While encryption can provide the integrality and confidentiality of the message, it is much more difficult to adequately address the source location privacy. For static deployed WSNs, adversary can easily perform trace-back attack to locate the source nodes by monitoring the traffic. The eavesdropped messages will leak the direction information of the source location by statistic analysis on traffic flow. In this paper, we propose a theoretical analysis measurement to address the quantitative amount of the information leakage from the eavesdropped message. Through this scheme, we analyze the conditions that satisfy the optimum protection for routing protocol design. Based on the proposed principle, we design a routing algorithm to minimize the information leakage by distributing the routing path uniformly in WSN. The theoretical analysis shows the proposed routing algorithm can provide approximate maximization of source location privacy. The simulation results show the proposed routing algorithm is very efficient and can be used for practical applications.
Bai, Leqiang, Li, Guoku.
2018.
Location Privacy Protection of WSN Based on Network Partition and Angle. 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1254–1260.
For the phantom routing algorithm, phantom source nodes are concentrated near the real source node, and for the angle based phantom routing algorithm, phantom source nodes focus on some areas, and the existing source location privacy protection algorithm has low security cycle, a source location privacy protection algorithm of wireless sensor networks based on angle and network partition is proposed. The algorithm selects the next hop node on forwarding path according to the angle relationship between neighbors, and ensures that phantom source nodes are far away from the real source node and have the diversity of geographic location through network partition. Simulation results show that, compared with the existing source location privacy protection algorithm, this algorithm can induce attackers to deviate from the real path, and increase security cycle.
Zhang, Kewang, Zahng, Qiong.
2018.
Preserve Location Privacy for Cyber-Physical Systems with Addresses Hashing at Data Link Layer. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1028–1032.
Due to their low complexity and robustness in nature, wireless sensor networks are a key component in cyber-physical system. The integration of wireless sensor network in cyber-physical system provides immense benefits in distributed controlled environment. However, the open nature of the wireless medium makes resource-constrained WSN vulnerable to unauthorized interception and detection. Privacy is becoming one of the major issues that jeopardize the successful deployment of WSN. In this paper, we propose a scheme named HASHA to provide location privacy. Different from previous approaches, HASHA protect nodes' location privacy at data link layer. It is well known that payload at data link layer frame is well protected through cryptosystem, but addresses at data link layer leaves unprotected. The adversaries can identify nodes in the network easily by capturing frames and check the source and destination addresses. If both addresses are well protected and unknown to the adversaries, they cannot identify nodes of the targeted networks, rendering it very difficult to launch traffic analysis and locate subjects. Simulation and analytical results demonstrate that our scheme provides stronger privacy protection and requires much less energy.
Eryonucu, Cihan, Ayday, Erman, Zeydan, Engin.
2018.
A Demonstration of Privacy-Preserving Aggregate Queries for Optimal Location Selection. 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :1–3.
In recent years, service providers, such as mobile operators providing wireless services, collected location data in enormous extent with the increase of the usages of mobile phones. Vertical businesses, such as banks, may want to use this location information for their own scenarios. However, service providers cannot directly provide these private data to the vertical businesses because of the privacy and legal issues. In this demo, we show how privacy preserving solutions can be utilized using such location-based queries without revealing each organization's sensitive data. In our demonstration, we used partially homomorphic cryptosystem in our protocols and showed practicality and feasibility of our proposed solution.
Rimjhim, Roy, Pradeep Kumar, Prakash Singh, Jyoti.
2018.
Encircling the Base Station for Source Location Privacy in Wireless Sensor Networks. 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS). :307–312.
Location Privacy breach in Wireless Sensor Networks (WSNs) cannot be controlled by encryption techniques as all the communications are signal based. Signal strength can be analyzed to reveal many routing information. Adversary takes advantage of this and tracks the incoming packet to know the direction of the packet. With the information of location of origin of packets, the Source is also exposed which is generating packets on sensing any object. Thus, the location of subject is exposed. For protecting such privacy breaches, routing schemes are used which create anonymization or diverts the adversary. In this paper, we are using `Dummy' packets that will be inserted into real traffic to confuse the adversary. The dummy packets are such inserted that they encircle the Sink or Base Station. These Dummy packets are send with a value of TTL (Time To Live) field such that they travel only a few hops. Since adversary starts backtracking from the Sink, it will be trapped in the dummy traffic. In our protocol, we are confusing adversary without introducing any delay in packet delivery. Adversary uses two common methods for knowing the source i.e. Traffic Analysis and Back-tracing. Mathematically and experimentally, our proposal is sound for both type of methods. Overhead is also balanced as packets will not live long.
Miao, Xu, Han, Guangjie, He, Yu, Wang, Hao, Jiang, Jinfang.
2018.
A Protecting Source-Location Privacy Scheme for Wireless Sensor Networks. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–5.
An exciting network called smart IoT has great potential to improve the level of our daily activities and the communication. Source location privacy is one of the critical problems in the wireless sensor network (WSN). Privacy protections, especially source location protection, prevent sensor nodes from revealing valuable information about targets. In this paper, we first discuss about the current security architecture and attack modes. Then we propose a scheme based on cloud for protecting source location, which is named CPSLP. This proposed CPSLP scheme transforms the location of the hotspot to cause an obvious traffic inconsistency. We adopt multiple sinks to change the destination of packet randomly in each transmission. The intermediate node makes routing path more varied. The simulation results demonstrate that our scheme can confuse the detection of adversary and reduce the capture probability.
Mutalemwa, Lilian C., Shin, Seokjoo.
2018.
Realizing Source Location Privacy in Wireless Sensor Networks Through Agent Node Routing. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1283–1285.
Wireless Sensor Networks (WSNs) are used in sensitive applications such as in asset monitoring applications. Due to the sensitivity of information in these applications, it is important to ensure that flow of data between sensor nodes is secure and does not expose any information about the source node or the monitored assets. This paper proposes a scheme to preserve the source location privacy based on random routing techniques. To achieve high privacy, the proposed scheme randomly sends packet to sink node through tactically positioned agent nodes. The position of agent nodes is designed to guarantee that successive packets are routed through highly random and perplexing routing paths as compared to other routing schemes. Simulation results demonstrate that proposed scheme provides longer safety period and higher privacy against both, patient and cautious adversaries.
Adilbekov, Ulugbek, Adilova, Anar, Saginbekov, Sain.
2018.
Providing Location Privacy Using Fake Sources in Wireless Sensor Networks. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). :1–4.
Wireless Sensor Networks (WSNs) consist of low-cost, resource-constrained sensor nodes and a designated node called a sink which collects data from the sensor nodes. A WSN can be used in numerous applications such as subject tracking and monitoring, where it is often desirable to keep the location of the subject private. Without location privacy protection, an adversary can locate the subject. In this paper, we propose an algorithm that tries to keep the subject location private from a global adversary, which can see the entire network traffic, in an energy efficient way.