Biblio
Dual Connectivity(DC) is one of the key technologies standardized in Release 12 of the 3GPP specifications for the Long Term Evolution (LTE) network. It attempts to increase the per-user throughput by allowing the user equipment (UE) to maintain connections with the MeNB (master eNB) and SeNB (secondary eNB) simultaneously, which are inter-connected via non-ideal backhaul. In this paper, we focus on one of the use cases of DC whereby the downlink U-plane data is split at the MeNB and transmitted to the UE via the associated MeNB and SeNB concurrently. In this case, out-of-order packet delivery problem may occur at the UE due to the delay over the non-ideal backhaul link, as well as the dynamics of channel conditions over the MeNB-UE and SeNB-UE links, which will introduce extra delay for re-ordering the packets. As a solution, we propose to adopt the RaptorQ FEC code to encode the source data at the MeNB, and then the encoded symbols are separately transmitted through the MeNB and SeNB. The out-of-order problem can be effectively eliminated since the UE can decode the original data as long as it receives enough encoded symbols from either the MeNB or SeNB. We present detailed protocol design for the RaptorQ code based concurrent transmission scheme, and simulation results are provided to illustrate the performance of the proposed scheme.
Configuring and maintaining an enterprise network is a challenging and error-prone process. Administrators must often consider security policies from a variety of sources simultaneously, including regulatory requirements, industry standards, and to mitigate attack vectors. Erroneous implementation of a policy, however, can result in costly data breaches and intrusions. Relying on humans to discover and troubleshoot violations is slow and prone to error, considering the speed at which new attack vectors propagate and the increasing network dynamics, partly an effect of SDN. To ensure the network is always in a state consistent with the desired policies, administrators need frameworks to automatically diagnose and repair violations in real-time. To address this problem, we present NEAt, a system analogous to a smartphone's autocorrect feature that enables on-the-fly repair to policy-violating updates. NEAt modifies the forwarding behavior of updates to automatically repair violations of properties such as reachability, service chaining, and segmentation. NEAt sits between an SDN controller and the forwarding devices, and intercepts updates proposed by SDN applications. If an update violates the policy defined by an administrator, such as reachability or segmentation, NEAt transforms the update into one that complies with the policy. Unlike domain-specific languages or synthesis platforms, NEAt allows enterprise networks to leverage the advanced functionality of SDN applications while simultaneously achieving strong, automated enforcement of general policies.
The importance of Networked Control Systems (NCS) is steadily increasing due to recent trends such as smart factories. Correct functionality of such NCS needs to be protected as malfunctioning systems could have severe consequences for the controlled process or even threaten human lives. However, with the increase in NCS, also attacks targeting these systems are becoming more frequent. To mitigate attacks that utilize captured sensor data in an NCS, transferred data needs to be protected. While using well-known methods such as Transport Layer Security (TLS) might be suitable to protect the data, resource constraint devices such as sensors often are not powerful enough to perform the necessary cryptographic operations. Also, as we will show in this paper, applying simple encryption in an NCS may enable easy Denial-of-Service (DoS) attacks by attacking single bits of the encrypted data. Therefore, in this paper, we present a hardware-based approach that enables sensors to perform the necessary encryption while being robust against (injected) bit failures.
This paper presents a new technique for providing the analysis and comparison of wiretap codes in the small blocklength regime over the binary erasure wiretap channel. A major result is the development of Monte Carlo strategies for quantifying a code's equivocation, which mirrors techniques used to analyze forward error correcting codes. For this paper, we limit our analysis to coset-based wiretap codes, and give preferred strategies for calculating and/or estimating the equivocation in order of preference. We also make several comparisons of different code families. Our results indicate that there are security advantages to using algebraic codes for applications that require small to medium blocklengths.
Cyber-physical systems connect the physical world and the information world by sensors and actuators. These sensors are usually small embedded systems which have many limitations on wireless communication, computing and storage. This paper proposes a lightweight coding method for secure and reliable transmission over a wireless communication links in cyber-physical systems. The reliability of transmission is provided by forward error correction. And to ensure the confidentiality, we utilize different encryption matrices at each time of coding which are generated by the sequence number of packets. So replay attacks and other cyber threats can be resisted simultaneously. The issues of the prior reliable transmission protocols and secure communication protocols in wireless networks of a cyber-physical system are reduced, such as large protocol overhead, high interaction delay and large computation cost.
Transmission techniques based on channel coding with feedback are proposed in this paper to enhance the security of wireless communications systems at the physical layer. Reliable and secure transmission over an additive noise Gaussian wiretap channel is investigated using Bose-Chaudhuri-Hocquenghem (BCH) and Low-Density Parity-Check (LDPC) channel codes. A hybrid automatic repeat-request (HARQ) protocol is used to allow for the retransmission of coded packets requested by the intended receiver (Bob). It is assumed that an eavesdropper (Eve) has access to all forward and feedback transmitted packets. To limit the information leakage to Eve, retransmitted packets are subdivided into smaller granular subpackets. Retransmissions are stopped as soon as the decoding process at the legitimate (Bob) receiver converges. For the hard decision decoded BCH codes, a framework to compute the frame error probability with granular HARQ is proposed. For LDPC codes, the HARQ retransmission requests are based on received symbols likelihood computations: the legitimate recipient request for the retransmission of the set of bits that are more likely to help for successful LDPC decoding. The performances of the proposed techniques are assessed for nul and negative security gap (SG) values, that is when the eavesdropper's channel benefits from equal or better channel conditions than the legitimate channel.
In typical Wireless Sensor Network (WSN) applications, the sensor nodes deployed are constrained both in computational and energy resources. For this reason, simple communication protocols are usually employed along with shortrange multi-hop topologies. In this paper, we challenge this notion and propose a structure that employs more robust (and naturally more complex) forward-error correction schemes in multi-hop extended star topologies. We demonstrate using simulation and real-world data based on popular WSN platforms that this approach can actually reduce the overall energy consumption of the nodes by significant margins (from 40 to 70%) compared to traditional WSN schemes that do not support sophisticated communication mechanisms and it is feasible to implement it economically without relying on expensive hardware.
In the near future, vehicular cloud will help to improve traffic safety and efficiency. Unfortunately, a computing of vehicular cloud and fog cloud faced a set of challenges in security, authentication, privacy, confidentiality and detection of misbehaving vehicles. In addition to, there is a need to recognize false messages from received messages in VANETs during moving on the road. In this work, the security issues and challenges for computing in the vehicular cloud over for computing is studied.
With the scale of big data increasing in large-scale IoT application, fog computing is a recent computing paradigm that is extending cloud computing towards the edge of network in the field. There are a large number of storage resources placed on the edge of the network to form a geographical distributed storage system in fog computing system (FCS). It is used to store the big data collected by the fog computing nodes and to reduce the management costs for moving big data to the cloud. However, the storage of fog nodes at the edge of the network faces a direct attack of external threats. In order to improve the security of the storage of fog nodes in FCS, in this paper, we proposed a data security storage model for fog computing (FCDSSM) to realize the integration of storage and security management in large-scale IoT application. We designed a detail of the FCDSSM system architecture, gave a design of the multi-level trusted domain, cooperative working mechanism, data synchronization and key management strategy for the FCDSSM. Experimental results show that the loss of computing and communication performance caused by data security storage in the FCDSSM is within the acceptable range, and the FCDSSM has good scalability. It can be adapted to big data security storage in large-scale IoT application.
Fog computing is a new paradigm which extends cloud computing services into the edge of the network. Indeed, it aims to pool edge resources in order to deal with cloud's shortcomings such as latency problems. However, this proposal does not ensure the honesty and the good behavior of edge devices. Thus, security places itself as an important challenge in front of this new proposal. Authentication is the entry point of any security system, which makes it an important security service. Traditional authentication schemes endure latency issues and some of them do not satisfy fog-computing requirements such as mutual authentication between end devices and fog servers. Thus, new authentication protocols need to be implemented. In this paper, we propose a new efficient authentication scheme for fog computing architecture. Our scheme ensures mutual authentication and remedies to fog servers' misbehaviors. Moreover, fog servers need to hold only a couple of information to verify the authenticity of every user in the system. Thus, it provides a low overhead in terms of storage capacity. Finally, we show through experimentation the efficiency of our scheme.
As an extension of cloud computing, fog computing is proving itself more and more potentially useful nowadays. Fog computing is introduced to overcome the shortcomings of cloud computing paradigm in handling the massive amount of traffic caused by the enormous number of Internet of Things devices being increasingly connected to the Internet on daily basis. Despite its advantages, fog architecture introduces new security and privacy threats that need to be studied and solved as soon as possible. In this work, we explore two privacy issues posed by the fog computing architecture and we define privacy challenges according to them. The first challenge is related to the fog's design purposes of reducing the latency and improving the bandwidth, where the existing privacy-preserving methods violate these design purposed. The other challenge is related to the proximity of fog nodes to the end-users or IoT devices. We discuss the importance of addressing these challenges by putting them in the context of real-life scenarios. Finally, we propose a privacy-preserving fog computing paradigm that solves these challenges and we assess the security and efficiency of our solution.
The panic among medical control, information, and device administrators is due to surmounting number of high-profile attacks on healthcare facilities. This hostile situation is going to lead the health informatics industry to cloud-hoarding of medical data, control flows, and site governance. While different healthcare enterprises opt for cloud-based solutions, it is a matter of time when fog computing environment are formed. Because of major gaps in reported techniques for fog security administration for health data i.e. absence of an overarching certification authority (CA), the security provisioning is one of the the issue that we address in this paper. We propose a security provisioning model (AZSPM) for medical devices in fog environments. We propose that the AZSPM can be build by using atomic security components that are dynamically composed. The verification of authenticity of the atomic components, for trust sake, is performed by calculating the processor clock cycles from service execution at the resident hardware platform. This verification is performed in the fully sand boxed environment. The results of the execution cycles are matched with the service specifications from the manufacturer before forwarding the mobile services to the healthcare cloud-lets. The proposed model is completely novel in the fog computing environments. We aim at building the prototype based on this model in a healthcare information system environment.
With the evolution of computing from using personal computers to use of online Internet of Things (IoT) services and applications, security risks have also evolved as a major concern. The use of Fog computing enhances reliability and availability of the online services due to enhanced heterogeneity and increased number of computing servers. However, security remains an open challenge. Various trust models have been proposed to measure the security strength of available service providers. We utilize the quantized security of Datacenters and propose a new security-based service broker policy(SbSBP) for Fog computing environment to allocate the optimal Datacenter(s) to serve users' requests based on users' requirements of cost, time and security. Further, considering the dynamic nature of Fog computing, the concept of dynamic reconfiguration has been added. Comparative analysis of simulation results shows the effectiveness of proposed policy to incorporate users' requirements in the decision-making process.
As the Internet of Things (IoT) continues to grow, there arises concerns and challenges with regard to the security and privacy of the IoT system. In this paper, we propose a FOg CompUting-based Security (FOCUS) system to address the security challenges in the IoT. The proposed FOCUS system leverages the virtual private network (VPN) to secure the access channel to the IoT devices. In addition, FOCUS adopts a challenge-response authentication to protect the VPN server against distributed denial of service (DDoS) attacks, which can further enhance the security of the IoT system. FOCUS is implemented in fog computing that is close to the end users, thus achieving a fast and efficient protection. We demonstrate FOCUS in a proof-of-concept prototype, and conduct experiments to evaluate its performance. The results show that FOCUS can effectively filter out malicious attacks with a very low response latency.
Cloud computing has established itself as an alternative IT infrastructure and service model. However, as with all logically centralized resource and service provisioning infrastructures, cloud does not handle well local issues involving a large number of networked elements (IoTs) and it is not responsive enough for many applications that require immediate attention of a local controller. Fog computing preserves many benefits of cloud computing and it is also in a good position to address these local and performance issues because its resources and specific services are virtualized and located at the edge of the customer premise. However, data security is a critical challenge in fog computing especially when fog nodes and their data move frequently in its environment. This paper addresses the data protection and the performance issues by 1) proposing a Region-Based Trust-Aware (RBTA) model for trust translation among fog nodes of regions, 2) introducing a Fog-based Privacy-aware Role Based Access Control (FPRBAC) for access control at fog nodes, and 3) developing a mobility management service to handle changes of users and fog devices' locations. The implementation results demonstrate the feasibility and the efficiency of our proposed framework.
The paradigm of fog computing has set new trends and heights in the modern world networking and have overcome the major technical complexities of cloud computing. It is not a replacement of cloud computing technology but it just adds feasible advanced characteristics to existing cloud computing paradigm.fog computing not only provide storage, networking and computing services but also provide a platform for IoT (internet of things). However, the fog computing technology also arise the threat to privacy and security of the data and services. The existing security and privacy mechanisms of the cloud computing cannot be applied to the fog computing directly due to its basic characteristics of large-scale geo-distribution, mobility and heterogeneity. This article provides an overview of the present existing issues and challenges in fog computing.
A long time ago Industrial Control Systems were in a safe place due to the use of proprietary technology and physical isolation. This situation has changed dramatically and the systems are nowadays often prone to severe attacks executed from remote locations. In many cases, intrusions remain undetected for a long time and this allows the adversary to meticulously prepare an attack and maximize its destructiveness. The ability to detect an attack in its early stages thus has a high potential to significantly reduce its impact. To this end, we propose a holistic, multi-layered, security monitoring and mitigation framework spanning the physical- and cyber domain. The comprehensiveness of the approach demands for scalability measures built-in by design. In this paper we present how scalability is addressed by an architecture that enforces geographically decentralized data reduction approaches that can be dynamically adjusted to the currently perceived context. A specific focus is put on a robust and resilient solution to orchestrate dynamic configuration updates. Experimental results based on a prototype implementation show the feasibility of the approach.
In this paper, we present a framework for graph-based representation of relation between sensors and alert types in a security alert sharing platform. Nodes in a graph represent either sensors or alert types, while edges represent various relations between them, such as common type of reported alerts or duplicated alerts. The graph is automatically updated, stored in a graph database, and visualized. The resulting graph will be used by network administrators and security analysts as a visual guide and situational awareness tool in a complex environment of security alert sharing.
The goal of network intrusion detection is to inspect network traffic in order to identify threats and known attack patterns. One of its key features is Deep Packet Inspection (DPI), that extracts the content of network packets and compares it against a set of detection signatures. While DPI is commonly used to protect networks and information systems, it requires direct access to the traffic content, which makes it blinded against encrypted network protocols such as HTTPS. So far, a difficult choice was to be made between the privacy of network users and security through the inspection of their traffic content to detect attacks or malicious activities. This paper presents a novel approach that bridges the gap between network security and privacy. It makes possible to perform DPI directly on encrypted traffic, without knowing neither the traffic content, nor the patterns of detection signatures. The relevance of our work is that it preserves the delicate balance in the security market ecosystem. Indeed, security editors will be able to protect their distinctive detection signatures and supply service providers only with encrypted attack patterns. In addition, service providers will be able to integrate the encrypted signatures in their architectures and perform DPI without compromising the privacy of network communications. Finally, users will be able to preserve their privacy through traffic encryption, while also benefiting from network security services. The extensive experiments conducted in this paper prove that, compared to existing encryption schemes, our solution reduces by 3 orders of magnitude the connection setup time for new users, and by 6 orders of magnitude the consumed memory space on the DPI appliance.