Biblio
Consider the following set-up for the plot of a possible future episode of the TV series Black Mirror: human brains can be connected directly to the net and MiningMind Inc. has developed a technology that merges a reward system with a cryptojacking engine that uses the human brain to mine cryptocurrency (or to carry out some other mining activity). Part of our brain will be committed to cryptographic calculations (mining), leaving the remaining part untouched for everyday operations, i.e., for our brain's normal daily activity. In this short paper, we briefly argue why this set-up might not be so far fetched after all, and explore the impact that such a technology could have on our lives and our society. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer
Augmented reality (AR) technologies, such as Microsoft's HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users with immersive virtual experiences by capturing input from a user's surroundings and overlaying virtual output on the user's perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR output remain largely unexplored. For example, an AR windshield application could intentionally or accidentally obscure oncoming vehicles or safety-critical output of other AR applications. In this work, we address the fundamental challenge of securing AR output in the face of malicious or buggy applications. We design, prototype, and evaluate Arya, an AR platform that controls application output according to policies specified in a constrained yet expressive policy framework. In doing so, we identify and overcome numerous challenges in securing AR output.
Immersive augmented reality (AR) technologies are becoming a reality. Prior works have identified security and privacy risks raised by these technologies, primarily considering individual users or AR devices. However, we make two key observations: (1) users will not always use AR in isolation, but also in ecosystems of other users, and (2) since immersive AR devices have only recently become available, the risks of AR have been largely hypothetical to date. To provide a foundation for understanding and addressing the security and privacy challenges of emerging AR technologies, grounded in the experiences of real users, we conduct a qualitative lab study with an immersive AR headset, the Microsoft HoloLens. We conduct our study in pairs - 22 participants across 11 pairs - wherein participants engage in paired and individual (but physically co-located) HoloLens activities. Through semi-structured interviews, we explore participants' security, privacy, and other concerns, raising key findings. For example, we find that despite the HoloLens's limitations, participants were easily immersed, treating virtual objects as real (e.g., stepping around them for fear of tripping). We also uncover numerous security, privacy, and safety concerns unique to AR (e.g., deceptive virtual objects misleading users about the real world), and a need for access control among users to manage shared physical spaces and virtual content embedded in those spaces. Our findings give us the opportunity to identify broader lessons and key challenges to inform the design of emerging single-and multi-user AR technologies.
In context of Industry 4.0 Augmented Reality (AR) is frequently mentioned as the upcoming interface technology for human-machine communication and collaboration. Many prototypes have already arisen in both the consumer market and in the industrial sector. According to numerous experts it will take only few years until AR will reach the maturity level to be deployed in productive applications. Especially for industrial usage it is required to assess security risks and challenges this new technology implicates. Thereby we focus on plant operators, Original Equipment Manufacturers (OEMs) and component vendors as stakeholders. Starting from several industrial AR use cases and the structure of contemporary AR applications, in this paper we identify security assets worthy of protection and derive the corresponding security goals. Afterwards we elaborate the threats industrial AR applications are exposed to and develop an edge computing architecture for future AR applications which encompasses various measures to reduce security risks for our stakeholders.
At present, mobile terminals are widely used in power system and easy to be the target or springboard to attack the power system. It is necessary to have security assessment of power mobile terminal system to enable early warning of potential risks. In the context, this paper builds the security assessment system against to power mobile terminals, with features from security assessment system of general mobile terminals and power application scenarios. Compared with the existing methods, this paper introduces machine learning to the Rank Correlation Analysis method, which relies on expert experience, and uses objective experimental data to optimize the weight parameters of the indicators. From experiments, this paper proves that weights self-learning method can be used to evaluate the security of power mobile terminal system and improve credibility of the result.
Having an effective security level for Embedded System (ES), helps a reliable and stable operation of this system. In order to identify, if the current security level for a given ES is effective or not, we need a proactive evaluation for this security level. The evaluation of the security level for ESs is not straightforward process, things like the heterogeneity among the components of ES complicate this process. One of the productive approaches, which overcame the complexity of evaluation for Security, Privacy and Dependability (SPD) is the Multi Metrics (MM). As most of SPD evaluation approaches, the MM approach bases on the experts knowledge for the basic evaluation. Regardless of its advantages, experts evaluation has some drawbacks, which foster the need for less experts-dependent evaluation. In this paper, we propose a framework for security measurability as a part of security, privacy and dependability evaluation. The security evaluation based on Multi Metric (MM) approach as being an effective approach for evaluations, thus, we call it MM framework. The art of evaluation investigated within MM framework, based also on systematic storing and retrieving of experts knowledge. Using MM framework, the administrator of the ES could evaluate and enhance the S-level of their system, without being an expert in security.
One of the effective ways to improve the quality of airport security (AS) is to improve the quality of management of the state of the system for countering acts of unlawful interference by intruders into the airports (SCAUI), which is a set of AS employees, technical systems and devices used for passenger screening, luggage, other operational procedures, as well as to protect the restricted areas of the airports. Proactive control of the SCAUI state includes ongoing conducting assessment of airport AS quality by experts, identification of SCAUI elements (functional state of AS employees, characteristics of technical systems and devices) that have a predominant influence on AS, and improvement of their performance. This article presents principles of the model and the method for conducting expert quality assessment of airport AS, whose application allows to increase the efficiency and quality of AS assessment by experts, and, consequently, the quality of SCAUI state control.
One challenge for cybersecurity experts is deciding which type of attack would be successful against the system they wish to protect. Often, this challenge is addressed in an ad hoc fashion and is highly dependent upon the skill and knowledge base of the expert. In this study, we present a method for automatically ranking attack patterns in the Common Attack Pattern Enumeration and Classification (CAPEC) database for a given system. This ranking method is intended to produce suggested attacks to be evaluated by a cybersecurity expert and not a definitive ranking of the "best" attacks. The proposed method uses topic modeling to extract hidden topics from the textual description of each attack pattern and learn the parameters of a topic model. The posterior distribution of topics for the system is estimated using the model and any provided text. Attack patterns are ranked by measuring the distance between each attack topic distribution and the topic distribution of the system using KL divergence.
If, as most experts agree, the mathematical basis of major blockchain systems is (probably if not provably) sound, why do they have a bad reputation? Human misbehavior (such as failed Bitcoin exchanges) accounts for some of the issues, but there are also deeper and more interesting vulnerabilities here. These include design faults and code-level implementation defects, ecosystem issues (such as wallets), as well as approaches such as the "51% attack" all of which can compromise the integrity of blockchain systems. With particular attention to the emerging non-financial applications of blockchain technology, this paper demonstrates the kinds of attacks that are possible and provides suggestions for minimizing the risks involved.
Community Health Workers (CHWs) have been using Mobile Health Data Collection Systems (MDCSs) for supporting the delivery of primary healthcare and carrying out public health surveys, feeding national-level databases with families' personal data. Such systems are used for public surveillance and to manage sensitive data (i.e., health data), so addressing the privacy issues is crucial for successfully deploying MDCSs. In this paper we present a comprehensive privacy threat analysis for MDCSs, discuss the privacy challenges and provide recommendations that are specially useful to health managers and developers. We ground our analysis on a large-scale MDCS used for primary care (GeoHealth) and a well-known Privacy Impact Assessment (PIA) methodology. The threat analysis is based on a compilation of relevant privacy threats from the literature as well as brain-storming sessions with privacy and security experts. Among the main findings, we observe that existing MDCSs do not employ adequate controls for achieving transparency and interveinability. Thus, threatening fundamental privacy principles regarded as data quality, right to access and right to object. Furthermore, it is noticeable that although there has been significant research to deal with data security issues, the attention with privacy in its multiple dimensions is prominently lacking.
Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.
The Internet of Things (IoT) devices have expanded into many aspects of everyday life. As these smart home devices grow more popular, security concerns increase. Researchers have modeled the privacy and security threats for smart home devices, but have yet to fully address the problem of unintended user access within the home. Often, smart home devices are purchased by one of the family members and associated with the same family member's account, yet are shared by the entire home. Currently most devices implement a course-grained access control model where someone in the home either has complete access or no access. We provide scenarios that highlight the need for exible authorization control and seamless authentication in IoT devices, especially in multi-user environments. We present design recommendations for IoT device manufacturers to provide fine-grained access control and authentication and describe the challenges to meeting the expectations of all users within a home.
A practically feasible low-overhead hardware design that provides strong defenses against memory bus side channel remains elusive. This paper observes that smart memory, memory with compute capability and a packetized interface, can dramatically simplify this problem. InvisiMem expands the trust base to include the logic layer in the smart memory to implement cryptographic primitives, which aid in addressing several memory bus side channel vulnerabilities efficiently. This allows the secure host processor to send encrypted addresses over the untrusted memory bus, and thereby eliminates the need for expensive address obfuscation techniques based on Oblivious RAM (ORAM). In addition, smart memory enables efficient solutions for ensuring freshness without using expensive Merkle trees, and mitigates memory bus timing channel using constant heart-beat packets. We demonstrate that InvisiMem designs have one to two orders of magnitude of lower overheads for performance, space, energy, and memory bandwidth, compared to prior solutions.
With the extensive application of cloud computing technology developing, security is of paramount importance in Cloud Computing. In the cloud computing environment, surveys have been provided on several intrusion detection techniques for detecting intrusions. We will summarize some literature surveys of various attack taxonomy, which might cause various threats in cloud environment. Such as attacks in virtual machines, attacks on virtual machine monitor, and attacks in tenant network. Besides, we review massive existing solutions proposed in the literature, such as misuse detection techniques, behavior analysis of network traffic, behavior analysis of programs, virtual machine introspection (VMI) techniques, etc. In addition, we have summarized some innovations in the field of cloud security, such as CloudVMI, data mining techniques, artificial intelligence, and block chain technology, etc. At the same time, our team designed and implemented the prototype system of CloudI (Cloud Introspection). CloudI has characteristics of high security, high performance, high expandability and multiple functions.
Cloud federations allow Cloud Service Providers (CSPs) to deliver more efficient service performance by interconnecting their Cloud environments and sharing their resources. However, the security of the federated Cloud service could be compromised if the resources are shared with relatively insecure and unreliable CSPs. In this paper, we propose a Cloud federation formation model that considers the security risk levels of CSPs. We start by quantifying the security risk of CSPs according to well defined evaluation criteria related to security risk avoidance and mitigation, then we model the Cloud federation formation process as a hedonic coalitional game with a preference relation that is based on the security risk levels and reputations of CSPs. We propose a federation formation algorithm that enables CSPs to cooperate while considering the security risk introduced to their infrastructures, and refrain from cooperating with undesirable CSPs. According to the stability-based solution concepts that we use to evaluate the game, the model shows that CSPs will be able to form acceptable federations on the fly to service incoming resource provisioning requests whenever required.
The paper presents the study of protecting wireless sensor network (WSNs) by using game theory for malicious node. By means of game theory the malicious attack nodes can be effectively modeled. In this research there is study on different game theoretic strategies for WSNs. Wireless sensor network are made upon the open shared medium which make easy to built attack. Jamming is the most serious security threats for information preservation. The key purpose of this paper is to present a general synopsis of jamming technique, a variety of types of jammers and its prevention technique by means of game theory. There is a network go through from numerous kind of external and internal attack. The jamming of attack that can be taking place because of the high communication inside the network execute by the nodes in the network. As soon as the weighty communications raise the power expenditure and network load also increases. In research work a game theoretic representation is define for the safe communication on the network.
The work proposes and justifies a processing algorithm of computer security incidents based on the author's signatures of cyberattacks. Attention is also paid to the design pattern SOPKA based on the Russian ViPNet technology. Recommendations are made regarding the establishment of the corporate segment SOPKA, which meets the requirements of Presidential Decree of January 15, 2013 number 31c “On the establishment of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” and “Concept of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” approved by the President of the Russian Federation on December 12, 2014, No K 1274.
We discuss the threat that hardware Trojans (HTs) impose on wireless networks, along with possible remedies for mitigating the risk. We first present an HT attack on an 802.11a/g transmitter (TX), which exploits Forward Error Correction (FEC) encoding. While FEC seeks to protect the transmitted signal against channel noise, it often offers more protection than needed by the actual channel. This margin is precisely where our HT finds room to stage an attack. We, then, introduce a Trojan-agnostic method which can be applied at the receiver (RX) to detect such attacks. This method monitors the noise distribution, to identify systematic inconsistencies which may be caused by an HT. Lastly, we describe a Wireless open-Access Research Platform (WARP) based experimental setup to investigate the feasibility and effectiveness of the proposed attack and defense. More specifically, we evaluate (i) the ability of a rogue RX to extract the leaked information, while an unsuspecting, legitimate RX accurately recovers the original message and remains oblivious to the attack, and (ii) the ability of channel noise profiling to detect the presence of the HT.
This paper introduces the notion of one-way communication schemes with partial noisy feedback. To support this communication, the schemes suppose that Alice and Bob wish to communicate: Alice sends a sequence of alphabets over a channel to Bob, while Alice receives feedback bits from Bob for δ fraction of the transmissions. An adversary is allowed to tamper up to a constant fraction of these transmissions for both forward rounds and feedback rounds separately. This paper intends to determine the Maximum Error Rate (MER), as a function of δ (0 ≤ δ ≤ 1), under the MER rate, so that Alice can successfully communicate the messages to Bob via some protocols with δ fraction of noisy feedback. To provide a reasonable solution for the above problem, we need to explore a new kind of coding scheme for the interactive communication. In this paper, we use the notion of “non-malleable codes” (NMC) which relaxes the notions of error-correction and error-detection to some extent in communication. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message or a completely unrelated value. This property largely enforces the way to detect the transmission errors. Based on the above knowledge, we provide an alphabet-based encoding scheme, including a pair of (Enc, Dec). Suppose the message needing to be transmitted is m; if m is corrupted unintentionally, then the encoding scheme Dec(Enc(m)) outputs a symbol `⊥' to denote that some potential corruptions happened during transmission. In this work, based on the previous results, we show that for any δ ∈ (0; 1), there exists a deterministic communication scheme with noiseless full feedback(δ = 1), such that the maximal tolerable error fraction γ (on Alice's transmissions) can be up to 1/2, theoretically. Moreover, we show that for any δ ∈ (0; 1), there exists a communication scheme with noisy feedback, denoting the forward and backward rounds noised with error fractions of γ0and γ1respectively, such that the maximal tolerable error fraction γ0(on forward rounds) can be up to 1/2, as well as the γ1(on feedback rounds) up to 1.