Visible to the public Biblio

Filters: Keyword is privacy concerns  [Clear All Filters]
2021-04-08
Jin, R., He, X., Dai, H..  2019.  On the Security-Privacy Tradeoff in Collaborative Security: A Quantitative Information Flow Game Perspective. IEEE Transactions on Information Forensics and Security. 14:3273–3286.
To contest the rapidly developing cyber-attacks, numerous collaborative security schemes, in which multiple security entities can exchange their observations and other relevant data to achieve more effective security decisions, are proposed and developed in the literature. However, the security-related information shared among the security entities may contain some sensitive information and such information exchange can raise privacy concerns, especially when these entities belong to different organizations. With such consideration, the interplay between the attacker and the collaborative entities is formulated as Quantitative Information Flow (QIF) games, in which the QIF theory is adapted to measure the collaboration gain and the privacy loss of the entities in the information sharing process. In particular, three games are considered, each corresponding to one possible scenario of interest in practice. Based on the game-theoretic analysis, the expected behaviors of both the attacker and the security entities are obtained. In addition, the simulation results are presented to validate the analysis.
2021-02-15
Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., Aygun, R. S..  2020.  Privacy-Preserving and Efficient Sharing of Drone Videos in Public Safety Scenarios using Proxy Re-encryption. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :45–52.
Unmanned Aerial Vehicles (UAVs) also known as drones are being used in many applications where they can record or stream videos. One interesting application is the Intelligent Transportation Systems (ITS) and public safety applications where drones record videos and send them to a control center for further analysis. These videos are shared by various clients such as law enforcement or emergency personnel. In such cases, the recording might include faces of civilians or other sensitive information that might pose privacy concerns. While the video can be encrypted and stored in the cloud that way, it can still be accessed once the keys are exposed to third parties which is completely insecure. To prevent such insecurity, in this paper, we propose proxy re-encryption based sharing scheme to enable third parties to access only limited videos without having the original encryption key. The costly pairing operations in proxy re-encryption are not used to allow rapid access and delivery of the surveillance videos to third parties. The key management is handled by a trusted control center, which acts as the proxy to re-encrypt the data. We implemented and tested the approach in a realistic simulation environment using different resolutions under ns-3. The implementation results and comparisons indicate that there is an acceptable overhead while it can still preserve the privacy of drivers and passengers.
2021-02-01
Ng, M., Coopamootoo, K. P. L., Toreini, E., Aitken, M., Elliot, K., Moorsel, A. van.  2020.  Simulating the Effects of Social Presence on Trust, Privacy Concerns Usage Intentions in Automated Bots for Finance. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :190–199.
FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants' trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function.
2020-11-20
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
Sarochar, J., Acharya, I., Riggs, H., Sundararajan, A., Wei, L., Olowu, T., Sarwat, A. I..  2019.  Synthesizing Energy Consumption Data Using a Mixture Density Network Integrated with Long Short Term Memory. 2019 IEEE Green Technologies Conference(GreenTech). :1—4.
Smart cities comprise multiple critical infrastructures, two of which are the power grid and communication networks, backed by centralized data analytics and storage. To effectively model the interdependencies between these infrastructures and enable a greater understanding of how communities respond to and impact them, large amounts of varied, real-world data on residential and commercial consumer energy consumption, load patterns, and associated human behavioral impacts are required. The dissemination of such data to the research communities is, however, largely restricted because of security and privacy concerns. This paper creates an opportunity for the development and dissemination of synthetic energy consumption data which is inherently anonymous but holds similarities to the properties of real data. This paper explores a framework using mixture density network (MDN) model integrated with a multi-layered Long Short-Term Memory (LSTM) network which shows promise in this area of research. The model is trained using an initial sample recorded from residential smart meters in the state of Florida, and is used to generate fully synthetic energy consumption data. The synthesized data will be made publicly available for interested users.
Roy, D. D., Shin, D..  2019.  Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :576—581.
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].
2020-11-02
Bloom, Gedare, Alsulami, Bassma, Nwafor, Ebelechukwu, Bertolotti, Ivan Cibrario.  2018.  Design patterns for the industrial Internet of Things. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1—10.
The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring.
2020-10-16
Cho, Sang Hyun, Oh, Sae Yong, Rou, Ho Gun, Gim, Gwang Yong.  2019.  A Study on The Factors Affecting The Continuous Use of E-Government Services - Focused on Privacy and Security Concerns-. 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). :351—361.

In this study, we conducted a survey of those who have used E-Government Services (civil servants, employees of public institutions, and the public) to empirically identify the factors affecting the continuous use intention E-Government Services, and conducted an empirical analysis using SPSS and Smart PLS with 284 valid samples except for dual, error and poor answers. Based on the success model of the information system (IS access model), we set independent variables which were divided into quality factors (service quality, system quality, information quality) and risk factors (personal information and security), and perceived ease of use and reliability, which are the main variables based on the technology acceptance model (TAM) that best describes the parameter group, were established as useful parameters. In addition, we design the research model by setting user satisfaction and the continuous use intention as dependent variables, conducted the study about how affecting factors influence to the acceptance factors through 14 hypotheses.The study found that 12 from 14 hypotheses were adopted and 2 were rejected. Looking at the results derived, it was analyzed that, firstly, 3 quality factors all affect perceived ease of use in relation to the quality of service, system quality, information quality which are perceived ease of use of E-Government Services. Second, in relation to the quality of service quality, system quality, information quality and perceived usefulness which are the quality factors of E-Government Services, the quality of service and information quality affect perceived usefulness, but system quality does not affect perceived usefulness. Third, it was analyzed that both factors influence reliability in the relationship between Privacy and security and trust which are risk factors. Fourth, the relationship between perceived ease of use and perceived usefulness has shown that perceived ease of use does not affect perceived usefulness. Finally, the relationship between user value factors (perceptual usability, perceived usefulness and trust) and user satisfaction and the continuous use intention was analyzed that user value factors affect user satisfaction while user satisfaction affects the continuous use intention. This study can be meaningful in that it theoretically presented the factors influencing the continued acceptance of e-government services through precedent research, presented the variables and measurement items verified through the empirical analysis process, and verified the causal relationship between the variables. The e-government service can contribute to the implementation of e-government in line with the era of the 4th Industrial Revolution by using it as a reference to the establishment of policies to improve the quality of people's lives and provide convenient services to the people.

2020-09-28
Dcruz, Hans John, Kaliaperumal, Baskaran.  2018.  Analysis of Cyber-Physical Security in Electric Smart Grid : Survey and challenges. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). :1–6.
With the advancement in technology, inclusion of Information and Communication Technology (ICT) in the conventional Electrical Power Grid has become evident. The combination of communication system with physical system makes it cyber-physical system (CPS). Though the advantages of this improvement in technology are numerous, there exist certain issues with the system. Security and privacy concerns of a CPS are a major field and research and the insight of which is content of this paper.
Gawanmeh, Amjad, Alomari, Ahmad.  2018.  Taxonomy Analysis of Security Aspects in Cyber Physical Systems Applications. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The notion of Cyber Physical Systems is based on using recent computing, communication, and control methods to design and operate intelligent and autonomous systems that can provide using innovative technologies. The existence of several critical applications within the scope of cyber physical systems results in many security and privacy concerns. On the other hand, the distributive nature of these CPS increases security risks. In addition, certain CPS, such as medical ones, generate and process sensitive data regularly, hence, this data must be protected at all levels of generation, processing, and transmission. In this paper, we present a taxonomy based analysis for the state of the art work on security issues in CPS. We identify four types of analysis for security issues in CPS: Modeling, Detection, Prevention, and Response. In addition, we identified six applications of CPS where security is relevant: eHealth and medical, smart grid and power related, vehicular technologies, industrial control and manufacturing, autonomous systems and UAVs, and finally IoT related issues. Then we mapped existing works in the literature into these categories.
Chertchom, Prajak, Tanimoto, Shigeaki, Konosu, Tsutomu, Iwashita, Motoi, Kobayashi, Toru, Sato, Hiroyuki, Kanai, Atsushi.  2019.  Data Management Portfolio for Improvement of Privacy in Fog-to-cloud Computing Systems. 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI). :884–889.
With the challenge of the vast amount of data generated by devices at the edge of networks, new architecture needs a well-established data service model that accounts for privacy concerns. This paper presents an architecture of data transmission and a data portfolio with privacy for fog-to-cloud (DPPforF2C). We would like to propose a practical data model with privacy from a digitalized information perspective at fog nodes. In addition, we also propose an architecture for implicating the privacy of DPPforF2C used in fog computing. Technically, we design a data portfolio based on the Message Queuing Telemetry Transport (MQTT) and the Advanced Message Queuing Protocol (AMQP). We aim to propose sample data models with privacy architecture because there are some differences in the data obtained from IoT devices and sensors. Thus, we propose an architecture with the privacy of DPPforF2C for publishing data from edge devices to fog and to cloud servers that could be applied to fog architecture in the future.
Li, Wei, Hu, Chunqiang, Song, Tianyi, Yu, Jiguo, Xing, Xiaoshuang, Cai, Zhipeng.  2018.  Privacy-Preserving Data Collection in Context-Aware Applications. 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :75–85.
Thanks to the development and popularity of context-aware applications, the quality of users' life has been improved through a wide variety of customized services. Meanwhile, users are suffering severe risk of privacy leakage and their privacy concerns are growing over time. To tackle the contradiction between the serious privacy issues and the growing privacy concerns in context-aware applications, in this paper, we propose a privacy-preserving data collection scheme by incorporating the complicated interactions among user, attacker, and service provider into a three-antithetic-party game. Under such a novel game model, we identify and rigorously prove the best strategies of the three parties and the equilibriums of the games. Furthermore, we evaluate the performance of our proposed data collection game by performing extensive numerical experiments, confirming that the user's data privacy can be effective preserved.
2020-09-04
Shi, Yang, Zhang, Qing, Liang, Jingwen, He, Zongjian, Fan, Hongfei.  2019.  Obfuscatable Anonymous Authentication Scheme for Mobile Crowd Sensing. IEEE Systems Journal. 13:2918—2929.

Mobile crowd sensing (MCS) is a rapidly developing technique for information collection from the users of mobile devices. This technique deals with participants' personal information such as their identities and locations, thus raising significant security and privacy concerns. Accordingly, anonymous authentication schemes have been widely considered for preserving participants' privacy in MCS. However, mobile devices are easy to lose and vulnerable to device capture attacks, which enables an attacker to extract the private authentication key of a mobile application and to further invade the user's privacy by linking sensed data with the user's identity. To address this issue, we have devised a special anonymous authentication scheme where the authentication request algorithm can be obfuscated into an unintelligible form and thus the authentication key is not explicitly used. This scheme not only achieves authenticity and unlinkability for participants, but also resists impersonation, replay, denial-of-service, man-in-the-middle, collusion, and insider attacks. The scheme's obfuscation algorithm is the first obfuscator for anonymous authentication, and it satisfies the average-case secure virtual black-box property. The scheme also supports batch verification of authentication requests for improving efficiency. Performance evaluations on a workstation and smart phones have indicated that our scheme works efficiently on various devices.

2020-08-28
Singh, Praveen Kumar, Kumar, Neeraj, Gupta, Bineet Kumar.  2019.  Smart Cards with Biometric Influences: An Enhanced ID Authentication. 2019 International Conference on Cutting-edge Technologies in Engineering (ICon-CuTE). :33—39.
Management of flow of all kinds of objects including human beings signifies their real time monitoring. This paper outlines the advantages accrued out of biometrics integration with Smartcards. It showcases the identity authentication employed through different biometric techniques. Biometric key considerations influencing the essence of this technology in Smartcards have been discussed briefly in this paper. With better accuracy and highly reliable support system this technology finds itself today in widespread deployment. However, there are still some concerns with human interfaces along with important factors in implementations of biometrics with smartcards which have been highlighted in this article. This paper also examines the privacy concerns of users in addressing their apprehensions to protect their confidentiality through biometric encryption and proposes DNA technology as a best possible biometric solution. However, due to inherent limitations of its processing time and an instant requirement of authentication, it has been suggested in the proposed modal to use it with combination of one or more suitable biometric technologies. An instant access has been proposed to the user with limited rights by using biometric technology other than the DNA as a primary source of authentication. DNA has been proposed as secondary source of authentication where only after due sample comparison full access rights to the user will be granted. This paper also aims in highlighting the number of advantages offered by the integration of biometrics with smartcards. It also discusses the need to tackle existing challenges due to restrictions in processing of different biometric technologies by defining certain specific future scopes for improvements in existing biometric technologies mainly against the time taken by it for sample comparisons.
2020-08-24
Harris, Daniel R., Delcher, Chris.  2019.  bench4gis: Benchmarking Privacy-aware Geocoding with Open Big Data. 2019 IEEE International Conference on Big Data (Big Data). :4067–4070.
Geocoding, the process of translating addresses to geographic coordinates, is a relatively straight-forward and well-studied process, but limitations due to privacy concerns may restrict usage of geographic data. The impact of these limitations are further compounded by the scale of the data, and in turn, also limits viable geocoding strategies. For example, healthcare data is protected by patient privacy laws in addition to possible institutional regulations that restrict external transmission and sharing of data. This results in the implementation of “in-house” geocoding solutions where data is processed behind an organization's firewall; quality assurance for these implementations is problematic because sensitive data cannot be used to externally validate results. In this paper, we present our software framework called bench4gis which benchmarks privacy-aware geocoding solutions by leveraging open big data as surrogate data for quality assurance; the scale of open big data sets for address data can ensure that results are geographically meaningful for the locale of the implementing institution.
2020-07-27
Dar, Muneer Ahmad, Nisar Bukhari, Syed, Khan, Ummer Iqbal.  2018.  Evaluation of Security and Privacy of Smartphone Users. 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). :1–4.

The growing use of smart phones has also given opportunity to the intruders to create malicious apps thereby the security and privacy concerns of a novice user has also grown. This research focuses on the privacy concerns of a user who unknowingly installs a malicious apps created by the programmer. In this paper we created an attack scenario and created an app capable of compromising the privacy of the users. After accepting all the permissions by the user while installing the app, the app allows us to track the live location of the Android device and continuously sends the GPS coordinates to the server. This spying app is also capable of sending the call log details of the user. This paper evaluates two leading smart phone operating systems- Android and IOS to find out the flexibility provided by the two operating systems to their programmers to create the malicious apps.

2020-06-22
Feng, Tianyi, Wong, Wai-Choong, Sun, Sumei, Zhao, Yonghao, Zhang, Zhixiang.  2019.  Location Privacy Preservation and Location-based Service Quality Tradeoff Framework Based on Differential Privacy. 2019 16th Workshop on Positioning, Navigation and Communications (WPNC). :1–6.
With the widespread use of location-based services and the development of localization systems, user's locations and even sensitive information can be easily accessed by some untrusted entities, which means privacy concerns should be taken seriously. In this paper, we propose a differential privacy framework to preserve users' location privacy and provide location-based services. We propose the metrics of location privacy, service quality and differential privacy to introduce a location privacy preserving mechanism, which can help users find the tradeoff or optimal strategy between location privacy and service quality. In addition, we design an adversary model to infer users' true locations, which can be used by application service providers to improve service quality. Finally, we present simulation results and analyze the performance of our proposed system.
2020-01-27
Akinrolabu, Olusola, New, Steve, Martin, Andrew.  2019.  Assessing the Security Risks of Multicloud SaaS Applications: A Real-World Case Study. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :81–88.

Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.

2019-11-25
Wu, Songrui, Li, Qi, Li, Guoliang, Yuan, Dong, Yuan, Xingliang, Wang, Cong.  2019.  ServeDB: Secure, Verifiable, and Efficient Range Queries on Outsourced Database. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :626–637.

Data outsourcing to cloud has been a common IT practice nowadays due to its significant benefits. Meanwhile, security and privacy concerns are critical obstacles to hinder the further adoption of cloud. Although data encryption can mitigate the problem, it reduces the functionality of query processing, e.g., disabling SQL queries. Several schemes have been proposed to enable one-dimensional query on encrypted data, but multi-dimensional range query has not been well addressed. In this paper, we propose a secure and scalable scheme that can support multi-dimensional range queries over encrypted data. The proposed scheme has three salient features: (1) Privacy: the server cannot learn the contents of queries and data records during query processing. (2) Efficiency: we utilize hierarchical cubes to encode multi-dimensional data records and construct a secure tree index on top of such encoding to achieve sublinear query time. (3) Verifiability: our scheme allows users to verify the correctness and completeness of the query results to address server's malicious behaviors. We perform formal security analysis and comprehensive experimental evaluations. The results on real datasets demonstrate that our scheme achieves practical performance while guaranteeing data privacy and result integrity.

2019-06-24
Oriero, E., Rahman, M. A..  2018.  Privacy Preserving Fine-Grained Data Distribution Aggregation for Smart Grid AMI Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1–9.

An advanced metering infrastructure (AMI) allows real-time fine-grained monitoring of the energy consumption data of individual consumers. Collected metering data can be used for a multitude of applications. For example, energy demand forecasting, based on the reported fine-grained consumption, can help manage the near future energy production. However, fine- grained metering data reporting can lead to privacy concerns. It is, therefore, imperative that the utility company receives the fine-grained data needed to perform the intended demand response service, without learning any sensitive information about individual consumers. In this paper, we propose an anonymous privacy preserving fine-grained data aggregation scheme for AMI networks. In this scheme, the utility company receives only the distribution of the energy consumption by the consumers at different time slots. We leverage a network tree topology structure in which each smart meter randomly reports its energy consumption data to its parent smart meter (according to the tree). The parent node updates the consumption distribution and forwards the data to the utility company. Our analysis results show that the proposed scheme can preserve the privacy and security of individual consumers while guaranteeing the demand response service.

2019-02-13
Yasumura, Y., Imabayashi, H., Yamana, H..  2018.  Attribute-based proxy re-encryption method for revocation in cloud storage: Reduction of communication cost at re-encryption. 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA). :312–318.
In recent years, many users have uploaded data to the cloud for easy storage and sharing with other users. At the same time, security and privacy concerns for the data are growing. Attribute-based encryption (ABE) enables both data security and access control by defining users with attributes so that only those users who have matching attributes can decrypt them. For real-world applications of ABE, revocation of users or their attributes is necessary so that revoked users can no longer decrypt the data. In actual implementations, ABE is used in hybrid with a symmetric encryption scheme such as the advanced encryption standard (AES) where data is encrypted with AES and the AES key is encrypted with ABE. The hybrid encryption scheme requires re-encryption of the data upon revocation to ensure that the revoked users can no longer decrypt that data. To re-encrypt the data, the data owner (DO) must download the data from the cloud, then decrypt, encrypt, and upload the data back to the cloud, resulting in both huge communication costs and computational burden on the DO depending on the size of the data to be re-encrypted. In this paper, we propose an attribute-based proxy re-encryption method in which data can be re-encrypted in the cloud without downloading any data by adopting both ABE and Syalim's encryption scheme. Our proposed scheme reduces the communication cost between the DO and cloud storage. Experimental results show that the proposed method reduces the communication cost by as much as one quarter compared to that of the trivial solution.
2018-06-07
Larisch, J., Choffnes, D., Levin, D., Maggs, B. M., Mislove, A., Wilson, C..  2017.  CRLite: A Scalable System for Pushing All TLS Revocations to All Browsers. 2017 IEEE Symposium on Security and Privacy (SP). :539–556.

Currently, no major browser fully checks for TLS/SSL certificate revocations. This is largely due to the fact that the deployed mechanisms for disseminating revocations (CRLs, OCSP, OCSP Stapling, CRLSet, and OneCRL) are each either incomplete, insecure, inefficient, slow to update, not private, or some combination thereof. In this paper, we present CRLite, an efficient and easily-deployable system for proactively pushing all TLS certificate revocations to browsers. CRLite servers aggregate revocation information for all known, valid TLS certificates on the web, and store them in a space-efficient filter cascade data structure. Browsers periodically download and use this data to check for revocations of observed certificates in real-time. CRLite does not require any additional trust beyond the existing PKI, and it allows clients to adopt a fail-closed security posture even in the face of network errors or attacks that make revocation information temporarily unavailable. We present a prototype of name that processes TLS certificates gathered by Rapid7, the University of Michigan, and Google's Certificate Transparency on the server-side, with a Firefox extension on the client-side. Comparing CRLite to an idealized browser that performs correct CRL/OCSP checking, we show that CRLite reduces latency and eliminates privacy concerns. Moreover, CRLite has low bandwidth costs: it can represent all certificates with an initial download of 10 MB (less than 1 byte per revocation) followed by daily updates of 580 KB on average. Taken together, our results demonstrate that complete TLS/SSL revocation checking is within reach for all clients.

2018-05-30
Chang, S. H., William, T., Wu, W. Z., Cheng, B. C., Chen, H., Hsu, P. H..  2017.  Design of an Authentication and Key Management System for a Smart Meter Gateway in AMI. 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE). :1–2.

By applying power usage statistics from smart meters, users are able to save energy in their homes or control smart appliances via home automation systems. However, owing to security and privacy concerns, it is recommended that smart meters (SM) should not have direct communication with smart appliances. In this paper, we propose a design for a smart meter gateway (SMGW) associated with a two-phase authentication mechanism and key management scheme to link a smart grid with smart appliances. With placement of the SMGW, we can reduce the design complexity of SMs as well as enhance the strength of security.

2018-04-02
Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

2015-05-05
Eckhoff, D., Sommer, C..  2014.  Driving for Big Data? Privacy Concerns in Vehicular Networking Security Privacy, IEEE. 12:77-79.

Communicating vehicles will change road traffic as we know it. With current versions of European and US standards in mind, the authors discuss privacy and traffic surveillance issues in vehicular network technology and outline research directions that could address these issues.