Visible to the public Biblio

Filters: Keyword is Transportation  [Clear All Filters]
2022-06-08
Sun, Yue, Dong, Bin, Chen, Wei, Xu, Xiaotian, Si, Guanlin, Jing, Sen.  2021.  Research on Security Evaluation Technology of Intelligent Video Terminal. 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). :339–342.
The application of intelligent video terminal has spread in all aspects of production and life, such as urban transportation, enterprises, hospitals, banks, and families. In recent years, intelligent video terminals, video recorders and other video monitoring system components are frequently exposed to high risks of security vulnerabilities, which is likely to threaten the privacy of users and data security. Therefore, it is necessary to strengthen the security research and testing of intelligent video terminals, and formulate reinforcement and protection strategies based on the evaluation results, in order to ensure the confidentiality, integrity and availability of data collected and transmitted by intelligent video terminals.
Wang, Runhao, Kang, Jiexiang, Yin, Wei, Wang, Hui, Sun, Haiying, Chen, Xiaohong, Gao, Zhongjie, Wang, Shuning, Liu, Jing.  2021.  DeepTrace: A Secure Fingerprinting Framework for Intellectual Property Protection of Deep Neural Networks. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :188–195.

Deep Neural Networks (DNN) has gained great success in solving several challenging problems in recent years. It is well known that training a DNN model from scratch requires a lot of data and computational resources. However, using a pre-trained model directly or using it to initialize weights cost less time and often gets better results. Therefore, well pre-trained DNN models are valuable intellectual property that we should protect. In this work, we propose DeepTrace, a framework for model owners to secretly fingerprinting the target DNN model using a special trigger set and verifying from outputs. An embedded fingerprint can be extracted to uniquely identify the information of model owner and authorized users. Our framework benefits from both white-box and black-box verification, which makes it useful whether we know the model details or not. We evaluate the performance of DeepTrace on two different datasets, with different DNN architectures. Our experiment shows that, with the advantages of combining white-box and black-box verification, our framework has very little effect on model accuracy, and is robust against different model modifications. It also consumes very little computing resources when extracting fingerprint.

2022-05-20
Zahra, Ayima, Asif, Muhammad, Nagra, Arfan Ali, Azeem, Muhammad, Gilani, Syed A..  2021.  Vulnerabilities and Security Threats for IoT in Transportation and Fleet Management. 2021 4th International Conference on Computing Information Sciences (ICCIS). :1–5.
The fields of transportation and fleet management have been evolving at a rapid pace and most of these changes are due to numerous incremental developments in the area. However, a comprehensive study that critically compares and contrasts all the existing techniques and methodologies in the area is still missing. This paper presents a comparative analysis of the vulnerabilities and security threats for IoT and their mitigation strategies in the context of transportation and fleet management. Moreover, we attempt to classify the existing strategies based on their underlying principles.
2022-04-26
Zhai, Hongqun, Zhang, Juan.  2021.  Research on Application of Radio Frequency Identification Technology in Intelligent Maritime Supervision. 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA). :433–436.

The increasing volume of domestic and foreign trade brings new challenges to the efficiency and safety supervision of transportation. With the rapid development of Internet technology, it has opened up a new era of intelligent Internet of Things and the modern marine Internet of Vessels. Radio Frequency Identification technology strengthens the intelligent navigation and management of ships through the unique identification function of “label is object, object is label”. Intelligent Internet of Vessels can achieve the function of “limited electronic monitoring and unlimited electronic deterrence” combined with marine big data and Cyber Physical Systems, and further improve the level of modern maritime supervision and service.

2022-04-01
Nair, Kishor Krishnan, Nair, Harikrishnan Damodaran.  2021.  Security Considerations in the Internet of Things Protocol Stack. 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD). :1–6.
Internet of Things (IoT) wireless devices has the capability to interconnect small footprint devices and its key purpose is to have seamless connection without operational barriers. It is built upon a three-layer (Perception, Transportation and Application) protocol stack architecture. A multitude of security principles must be imposed at each layer for the proper and efficient working of various IoT applications. In the forthcoming years, it is anticipated that IoT devices will be omnipresent, bringing several benefits. The intrinsic security issues in conjunction with the resource constraints in IoT devices enables the proliferation of security vulnerabilities. The absence of specifically designed IoT frameworks, specifications, and interoperability issues further exacerbate the challenges in the IoT arena. This paper conducts an investigation in IoT wireless security with a focus on the major security challenges and considerations from an IoT protocol stack perspective. The vulnerabilities in the IoT protocol stack are laid out along with a gap analysis, evaluation, and the discussion on countermeasures. At the end of this work, critical issues are highlighted with the aim of pointing towards future research directions and drawing conclusions out of it.
2022-03-23
Matellán, Vicente, Rodríguez-Lera, Francisco-J., Guerrero-Higueras, Ángel-M., Rico, Francisco-Martín, Ginés, Jonatan.  2021.  The Role of Cybersecurity and HPC in the Explainability of Autonomous Robots Behavior. 2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO). :1–5.
Autonomous robots are increasingly widespread in our society. These robots need to be safe, reliable, respectful of privacy, not manipulable by external agents, and capable of offering explanations of their behavior in order to be accountable and acceptable in our societies. Companies offering robotic services will need to provide mechanisms to address these issues using High Performance Computing (HPC) facilities, where logs and off-line forensic analysis could be addressed if required, but these solutions are still not available in software development frameworks for robots. The aim of this paper is to discuss the implications and interactions among cybersecurity, safety, and explainability with the goal of making autonomous robots more trustworthy.
2022-03-14
Obeidat, Nawar, Purdy, Carla.  2021.  Improving Security in SCADA Systems through Model-checking with TLA+. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). :832—835.
In today’s world, Supervisory Control and Data Acquisition (SCADA) networks have many critical tasks, including managing infrastructure such as power, water, and sewage systems, and controlling automated manufacturing and transportation systems. Securing these systems is crucial. Here we describe a project to design security into an example system using formal specifications. Our example system is a component in a cybersecurity testbed at the University of Cincinnati, which was described in previous work. We also show how a design flaw can be discovered and corrected early in the system development process.
2022-03-01
Pollicino, Francesco, Ferretti, Luca, Stabili, Dario, Marchetti, Mirco.  2021.  Accountable and privacy-aware flexible car sharing and rental services. 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA). :1–7.
The transportation sector is undergoing rapid changes to reduce pollution and increase life quality in urban areas. One of the most effective approaches is flexible car rental and sharing to reduce traffic congestion and parking space issues. In this paper, we envision a flexible car sharing framework where vehicle owners want to make their vehicles available for flexible rental to other users. The owners delegate the management of their vehicles to intermediate services under certain policies, such as municipalities or authorized services, which manage the due infrastructure and services that can be accessed by users. We investigate the design of an accountable solution that allow vehicles owners, who want to share their vehicles securely under certain usage policies, to control that delegated services and users comply with the policies. While monitoring users behavior, our approach also takes care of users privacy, preventing tracking or profiling procedures by other parties. Existing approaches put high trust assumptions on users and third parties, do not consider users' privacy requirements, or have limitations in terms of flexibility or applicability. We propose an accountable protocol that extends standard delegated authorizations and integrate it with Security Credential Management Systems (SCMS), while considering the requirements and constraints of vehicular networks. We show that the proposed approach represents a practical approach to guarantee accountability in realistic scenarios with acceptable overhead.
2022-02-08
Al-shareeda, Mahmood A., Alazzawi, Murtadha A., Anbar, Mohammed, Manickam, Selvakumar, Al-Ani, Ahmed K..  2021.  A Comprehensive Survey on Vehicular Ad Hoc Networks (VANETs). 2021 International Conference on Advanced Computer Applications (ACA). :156–160.
Vehicle Ad-hoc Networks (VANETs) have recently become an active research area. This is because of its important applications in the transportation field in which vehicles have severe position during activities of daily living in persons. In this paper, the basic background of the VANET from the Intelligent Transportation System (ITS), Mobile Ad-hoc Networks (MANETs), VANET standard and VANET characteristics are discussed. Second, the architecture from components and communications of the system are presented. Then, the critical challenges and future perspectives in this field are comprehensively reviewed. This paper could serve as a guide and reference in the design and development of any new techniques for VANETs. Moreover, this paper may help researchers and developers in the selection of the main features of VANET for their goals in one single document.
2022-02-07
Catak, Evren, Catak, Ferhat Ozgur, Moldsvor, Arild.  2021.  Adversarial Machine Learning Security Problems for 6G: mmWave Beam Prediction Use-Case. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–6.
6G is the next generation for the communication systems. In recent years, machine learning algorithms have been applied widely in various fields such as health, transportation, and the autonomous car. The predictive algorithms will be used in 6G problems. With the rapid developments of deep learning techniques, it is critical to take the security concern into account when applying the algorithms. While machine learning offers significant advantages for 6G, AI models’ security is normally ignored. Due to the many applications in the real world, security is a vital part of the algorithms. This paper proposes a mitigation method for adversarial attacks against proposed 6G machine learning models for the millimeter-wave (mmWave) beam prediction using adversarial learning. The main idea behind adversarial attacks against machine learning models is to produce faulty results by manipulating trained deep learning models for 6G applications for mmWave beam prediction. We also present the adversarial learning mitigation method’s performance for 6G security in millimeter-wave beam prediction application with fast gradient sign method attack. The mean square errors of the defended model under attack are very close to the undefended model without attack.
2022-02-03
Zhang, Kevin, Olmsted, Aspen.  2021.  Examining Autonomous Vehicle Operating Systems Vulnerabilities using a Cyber-Physical Approach. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). :976—981.
Increasingly, the transportation industry has moved towards automation to improve safety, fuel efficiency, and system productivity. However, the increased scrutiny that automated vehicles (AV) face over functional safety has hindered the industry's unbridled confidence in self-driving technologies. As AVs are cyber-physical systems, they utilize distributed control to accomplish a range of safety-critical driving tasks. The Operation Systems (OS) serve as the core of these control systems. Therefore, their designs and implementation must incorporate ways to protect AVs against what must be assumed to be inevitable cyberattacks to meet the overall AV functional safety requirements. This paper investigates the connection between functional safety and cybersecurity in the context of OS. This study finds that risks due to delays can worsen by potential cybersecurity vulnerabilities through a case example of an automated vehicle following. Furthermore, attack surfaces and cybersecurity countermeasures for protecting OSs from security breaches are addressed.
2022-01-31
Devi, P. Dharani, Ilakiya, S..  2021.  A Secure Employee Health Management System Using Werable Technology. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
An important demand of a wearable health observance system is to soundly exchange the Employees' health data and preventing improper use of black devices. In this project we tend to measure planning wearable sensors device sight abnormal and/or unforeseen things by observance physiological parameters alongside different symptoms. Therefore, necessary facilitate is provided in times of urgent would like. To minimize the health hazards and improving the well-being of employees is to be a major critical role in an organization. As per the report by the Indian Labour Organization, the organization spends an average of 3.94% for GDP on employee treatment. The same study revealed that almost 2.78% million deaths occurs every year and 3.74% million occur non-fatal injuries every year at work. So, the organizations are making towards mitigating the facilities to decimating various IoT technologies and the IoT technology are embedded with modern smart systems, it is easy to monitor every employee in an organization, and also it collects and gather the data and send any critical information by the employees.
2022-01-25
Jha, Ashish, Novikova, Evgeniya S., Tokarev, Dmitry, Fedorchenko, Elena V..  2021.  Feature Selection for Attacker Attribution in Industrial Automation amp; Control Systems. 2021 IV International Conference on Control in Technical Systems (CTS). :220–223.
Modern Industrial Automation & Control Systems (IACS) are essential part of the critical infrastructures and services. They are used in health, power, water, and transportation systems, and the impact of cyberattacks on IACS could be severe, resulting, for example, in damage to the environment, public or employee safety or health. Thus, building IACS safe and secure against cyberattacks is extremely important. The attacker model is one of the key elements in risk assessment and other security related information system management tasks. The aim of the study is to specify the attacker's profile based on the analysis of network and system events. The paper presents an approach to the selection of attacker's profile attributes from raw network and system events of the Linux OS. To evaluate the approach the experiments were performed on data collected within the Global CPTC 2019 competition.
2021-12-20
Petrenkov, Denis, Agafonov, Anton.  2021.  Anomaly Detection in Vehicle Platoon with Third-Order Consensus Control. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0463–0466.
The development of autonomous connected vehicles, in particular, moving as a platoon formation, has received great attention in recent years. The autonomous movement allows to increase the efficiency of the transportation infrastructure usage, reduce the fuel consumption, improve road safety, decrease traffic congestion, and others. To maintain an optimal spacing policy in a platoon formation, it is necessary to exchange information between vehicles. The Vehicular ad hoc Network (VANET) is the key component to establish wireless vehicle-to-vehicle communications. However, vehicular communications can be affected by different security threats. In this paper, we consider the third-order consensus approach as a control strategy for the vehicle platoon. We investigate several types of malicious attacks (spoofing, message falsification) and propose an anomaly detection algorithm that allows us to detect the malicious vehicle and enhance the security of the vehicle platoon. The experimental study of the proposed approach is conducted using Plexe, a vehicular network simulator that permits the realistic simulation of platooning systems.
2021-11-08
Muzammal, Syeda Mariam, Murugesan, Raja Kumar, Jhanjhi, Noor Zaman, Jung, Low Tang.  2020.  SMTrust: Proposing Trust-Based Secure Routing Protocol for RPL Attacks for IoT Applications. 2020 International Conference on Computational Intelligence (ICCI). :305–310.
With large scale generation and exchange of data between IoT devices and constrained IoT security to protect data communication, it becomes easy for attackers to compromise data routes. In IoT networks, IPv6 Routing Protocol is the de facto routing protocol for Low Power and Lossy Networks (RPL). RPL offers limited security against several RPL-specific and WSN-inherited attacks in IoT applications. Additionally, IoT devices are limited in memory, processing, and power to operate properly using the traditional Internet and routing security solutions. Several mitigation schemes for the security of IoT networks and routing, have been proposed including Machine Learning-based, IDS-based, and Trust-based approaches. In existing trust-based methods, mobility of nodes is not considered at all or its insufficient for mobile sink nodes, specifically for security against RPL attacks. This research work proposes a conceptual design, named SMTrust, for security of routing protocol in IoT, considering the mobility-based trust metrics. The proposed solution intends to provide defense against popular RPL attacks, for example, Blackhole, Greyhole, Rank, Version Number attacks, etc. We believe that SMTrust shall provide better network performance for attacks detection accuracy, mobility and scalability as compared to existing trust models, such as, DCTM-RPL and SecTrust-RPL. The novelty of our solution is that it considers the mobility metrics of the sensor nodes as well as the sink nodes, which has not been addressed by the existing models. This consideration makes it suitable for mobile IoT environment. The proposed design of SMTrust, as secure routing protocol, when embedded in RPL, shall ensure confidentiality, integrity, and availability among the sensor nodes during routing process in IoT communication and networks.
2021-09-16
Liu, Zixuan, Yu, Jie.  2020.  Design and Analysis of a New RFID Security Protocol for Internet of Things. 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT). :16–18.
As the core of the third information revolution, the Internet of things plays an important role in the development of the times. According to the relevant investigation and research, we can find that the research on the Internet of things is still in the stage of LAN and private network, and its open advantages have not been fully utilized[1]. In this context, RFID technology as the core technology of the Internet of things, the security protocol plays an important role in the normal use of the technology. With the continuous development of Internet information technology, the disadvantages of security protocol become more and more obvious. These problems seriously affect the popularity of Internet of things technology. Therefore, in the future work, the relevant staff need to continue to strengthen research, according to the future development plan, effectively play the advantages of technology, and further promote its development.
2021-09-07
Liu, Shu, Tao, Xingyu, Hu, Wenmin.  2020.  Planning Method of Transportation and Power Coupled System Based on Road Expansion Model. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :361–366.
In this paper, a planning method of transportation-power coupled system based on road expansion model is proposed. First of all, based on the Wardrop equilibrium state, the traffic flow is distributed, to build the road expansion model and complete the traffic network modeling. It is assumed that the road charging demand is directly proportional to the road traffic flow, and the charging facilities will cause a certain degree of congestion on the road. This mutual influence relationship to establish a coupling system of transportation network and power network is used for the planning. In the planning method, the decision variables include the location of charging facilities, the setting of energy storage systems and the road expansion scheme. The planning goal is to minimize the investment cost and operation cost. The CPLEX solver is used to solve the mixed integer nonlinear programming problem. Finally, the simulation analysis is carried out to verify the validity and feasibility of the planning method, which can comprehensively consider the road expansion cost and travel time cost, taking a coupled system of 5-node traffic system and IEEE14 node distribution network as example.
2021-06-01
Lu, Chang, Lei, Xiaochun, Xie, Junlin, Wang, Xiaolong, Mu, XiangBoge.  2020.  Panoptic Feature Pyramid Network Applications In Intelligent Traffic. 2020 16th International Conference on Computational Intelligence and Security (CIS). :40–43.
Intelligenta transportation is an important part of urban development. The core of realizing intelligent transportation is to master the urban road condition. This system processes the video of dashcam based on the Panoptic Segmentation network and adds a tracking module based on the comparison of front and rear frames and KM algorithm. The system mainly includes the following parts: embedded device, Panoptic Feature Pyramid Network, cloud server and Web site.
2021-03-09
Muñoz, C. M. Blanco, Cruz, F. Gómez, Valero, J. S. Jimenez.  2020.  Software architecture for the application of facial recognition techniques through IoT devices. 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1–5.

The facial recognition time by time takes more importance, due to the extend kind of applications it has, but it is still challenging when faces big variations in the characteristics of the biometric data used in the process and especially referring to the transportation of information through the internet in the internet of things context. Based on the systematic review and rigorous study that supports the extraction of the most relevant information on this topic [1], a software architecture proposal which contains basic security requirements necessary for the treatment of the data involved in the application of facial recognition techniques, oriented to an IoT environment was generated. Concluding that the security and privacy considerations of the information registered in IoT devices represent a challenge and it is a priority to be able to guarantee that the data circulating on the network are only accessible to the user that was designed for this.

2020-12-17
Gao, X., Fu, X..  2020.  Miniature Water Surface Garbage Cleaning Robot. 2020 International Conference on Computer Engineering and Application (ICCEA). :806—810.

In light of the problem for garbage cleaning in small water area, an intelligent miniature water surface garbage cleaning robot with unmanned driving and convenient operation is designed. Based on STC12C5A60S2 as the main controller in the design, power module, transmission module and cleaning module are controlled together to realize the function of cleaning and transporting garbage, intelligent remote control of miniature water surface garbage cleaning robot is realized by the WiFi module. Then the prototype is developed and tested, which will verify the rationality of the design. Compared with the traditional manual driving water surface cleaning devices, the designed robot realizes the intelligent control of unmanned driving, and achieves the purpose of saving human resources and reducing labor intensity, and the system operates security and stability, which has certain practical value.

2020-10-19
Hasan, Khondokar Fida, Kaur, Tarandeep, Hasan, Md. Mhedi, Feng, Yanming.  2019.  Cognitive Internet of Vehicles: Motivation, Layered Architecture and Security Issues. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). :1–6.
Over the past few years, we have experienced great technological advancements in the information and communication field, which has significantly contributed to reshaping the Intelligent Transportation System (ITS) concept. Evolving from the platform of a collection of sensors aiming to collect data, the data exchanged paradigm among vehicles is shifted from the local network to the cloud. With the introduction of cloud and edge computing along with ubiquitous 5G mobile network, it is expected to see the role of Artificial Intelligence (AI) in data processing and smart decision imminent. So as to fully understand the future automobile scenario in this verge of industrial revolution 4.0, it is necessary first of all to get a clear understanding of the cutting-edge technologies that going to take place in the automotive ecosystem so that the cyber-physical impact on transportation system can be measured. CIoV, which is abbreviated from Cognitive Internet of Vehicle, is one of the recently proposed architectures of the technological evolution in transportation, and it has amassed great attention. It introduces cloud-based artificial intelligence and machine learning into transportation system. What are the future expectations of CIoV? To fully contemplate this architecture's future potentials, and milestones set to achieve, it is crucial to understand all the technologies that leaned into it. Also, the security issues to meet the security requirements of its practical implementation. Aiming to that, this paper presents the evolution of CIoV along with the layer abstractions to outline the distinctive functional parts of the proposed architecture. It also gives an investigation of the prime security and privacy issues associated with technological evolution to take measures.
2020-09-28
Evans, David, Calvo, Daniel, Arroyo, Adrian, Manilla, Alejandro, Gómez, David.  2019.  End-to-end security assessment framework for connected vehicles. 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC). :1–6.
To increase security and to offer user experiences according to the requirements of a hyper-connected world, modern vehicles are integrating complex electronic systems, being transformed into systems of Cyber-Physical Systems (CPS). While a great diversity of heterogeneous hardware and software components must work together and control in real-time crucial functionalities, cybersecurity for the automotive sector is still in its infancy. This paper provides an analysis of the most common vulnerabilities and risks of connected vehicles, using a real example based on industrial and market-ready technologies. Several components have been implemented to inject and simulate multiple attacks, which enable security services and mitigation actions to be developed and validated.
2020-08-28
Li, Peng, Min, Xiao-Cui.  2019.  Accurate Marking Method of Network Attacking Information Based on Big Data Analysis. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :228—231.

In the open network environment, the network offensive information is implanted in big data environment, so it is necessary to carry out accurate location marking of network offensive information, to realize network attack detection, and to implement the process of accurate location marking of network offensive information. Combined with big data analysis method, the location of network attack nodes is realized, but when network attacks cross in series, the performance of attack information tagging is not good. An accurate marking technique for network attack information is proposed based on big data fusion tracking recognition. The adaptive learning model combined with big data is used to mark and sample the network attack information, and the feature analysis model of attack information chain is designed by extracting the association rules. This paper classifies the data types of the network attack nodes, and improves the network attack detection ability by the task scheduling method of the network attack information nodes, and realizes the accurate marking of the network attacking information. Simulation results show that the proposed algorithm can effectively improve the accuracy of marking offensive information in open network environment, the efficiency of attack detection and the ability of intrusion prevention is improved, and it has good application value in the field of network security defense.

2020-06-26
Salman, Ahmad, El-Tawab, Samy.  2019.  Efficient Hardware/Software Co-Design of Elliptic-Curve Cryptography for the Internet of Things. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets). :1—6.

The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.

2020-06-12
Deng, Juan, Zhou, Bing, Shi, YiLiang.  2018.  Application of Improved Image Hash Algorithm in Image Tamper Detection. 2018 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :629—632.

In order to study the application of improved image hashing algorithm in image tampering detection, based on compressed sensing and ring segmentation, a new image hashing technique is studied. The image hash algorithm based on compressed sensing and ring segmentation is proposed. First, the algorithm preprocesses the input image. Then, the ring segment is used to extract the set of pixels in each ring region. These aggregate data are separately performed compressed sensing measurements. Finally, the hash value is constructed by calculating the inner product of the measurement vector and the random vector. The results show that the algorithm has good perceived robustness, uniqueness and security. Finally, the ROC curve is used to analyze the classification performance. The comparison of ROC curves shows that the performance of the proposed algorithm is better than FM-CS, GF-LVQ and RT-DCT.