Biblio
The correctness of security control system strategy is very important to ensure the stability of power system. Aiming at the problem that the current security control strategy verification method is not enough to match the increasingly complex large power grid, this paper proposes a cyclic verification method of security control system strategy table based on constraints and whole process dynamic simulation. Firstly, the method is improved based on the traditional security control strategy model to make the strategy model meet certain generalization ability; And on the basis of this model, the cyclic dynamic verification of the strategy table is realized based on the constraint conditions and the whole process dynamic simulation, which not only ensures the high accuracy of strategy verification for the security control strategy of complex large power grid, but also ensures that the power system is stable and controllable. Finally, based on a certain regional power system, the optimal verification of strategy table verification experiment is realized. The experimental results show that the average processing time of the proposed method is 10.32s, and it can effectively guarantee the controllability and stability of power grid.
With the rapid development of Internet of Things technology and sensor networks, large amount of data is facing security challenges in the transmission process. In the process of data transmission, the standardization and authentication of data sources are very important. A digital signature scheme based on bilinear pairing problem is designed. In this scheme, by signing the authorization mechanism, the management node can control the signature process and distribute data. The use of private key segmentation mechanism can reduce the performance requirements of sensor nodes. The reasonable combination of timestamp mechanism can ensure the time limit of signature and be verified after the data is sent. It is hoped that the implementation of this scheme can improve the security of data transmission on the Internet of things environment.
Federated learning is a distributed learning technique where machine learning models are trained on client devices in which the local training data resides. The training is coordinated via a central server which is, typically, controlled by the intended owner of the resulting model. By avoiding the need to transport the training data to the central server, federated learning improves privacy and efficiency. But it raises the risk of model theft by clients because the resulting model is available on every client device. Even if the application software used for local training may attempt to prevent direct access to the model, a malicious client may bypass any such restrictions by reverse engineering the application software. Watermarking is a well-known deterrence method against model theft by providing the means for model owners to demonstrate ownership of their models. Several recent deep neural network (DNN) watermarking techniques use backdooring: training the models with additional mislabeled data. Backdooring requires full access to the training data and control of the training process. This is feasible when a single party trains the model in a centralized manner, but not in a federated learning setting where the training process and training data are distributed among several client devices. In this paper, we present WAFFLE, the first approach to watermark DNN models trained using federated learning. It introduces a retraining step at the server after each aggregation of local models into the global model. We show that WAFFLE efficiently embeds a resilient watermark into models incurring only negligible degradation in test accuracy (-0.17%), and does not require access to training data. We also introduce a novel technique to generate the backdoor used as a watermark. It outperforms prior techniques, imposing no communication, and low computational (+3.2%) overhead$^\textrm1$$^\textrm1$\$The research report version of this paper is also available in https://arxiv.org/abs/2008.07298, and the code for reproducing our work can be found at https://github.com/ssg-research/WAFFLE.
Companies like Netflix increasingly use the cloud to deploy their business processes. Those processes often involve partnerships with other companies, and can be modeled as workflows where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data to be secured.In practice, access control is an essential building block to deploy these secured workflows. This component is generally managed by administrators using high-level policies meant to represent the requirements and restrictions put on the workflow. Handling access control with a high-level scheme comes with the benefit of separating the problem of specification, i.e. defining the desired behavior of the system, from the problem of implementation, i.e. enforcing this desired behavior. However, translating such high-level policies into a deployed implementation can be error-prone.Even though semi-automatic and automatic tools have been proposed to assist this translation, policy verification remains highly challenging in practice. In this paper, our aim is to define and propose structures assisting the checking and correction of potential errors introduced on the ground due to a faulty translation or corrupted deployments. In particular, we investigate structures with formal foundations able to naturally model policies. Metagraphs, a generalized graph theoretic structure, fulfill those requirements: their usage enables to compare high-level policies to their implementation. In practice, we consider Rego, a language used by companies like Netflix and Plex for their release process, as a valuable representative of most common policy languages. We propose a suite of tools transforming and checking policies as metagraphs, and use them in a global framework to show how policy verification can be achieved with such structures. Finally, we evaluate the performance of our verification method.
Distributed Denial-of-Service (DDoS) attacks pose a huge risk to the network and threaten its stability. A game theoretic approach for intrusion detection and prevention is proposed to avoid DDoS attacks in the internet. Game theory provides a control mechanism that automates the intrusion detection and prevention process within a network. In the proposed system, system-subject interaction is modeled as a 2-player Bayesian signaling zero sum game. The game's Nash Equilibrium gives a strategy for the attacker and the system such that neither can increase their payoff by changing their strategy unilaterally. Moreover, the Intent Objective and Strategy (IOS) of the attacker and the system are modeled and quantified using the concept of incentives. In the proposed system, the prevention subsystem consists of three important components namely a game engine, database and a search engine for computing the Nash equilibrium, to store and search the database for providing the optimum defense strategy. The framework proposed is validated via simulations using ns3 network simulator and has acquired over 80% detection rate, 90% prevention rate and 6% false positive alarms.
State estimation is the core operation performed within the energy management system (EMS) of smart grid. Hence, the reliability and integrity of a smart grid relies heavily on the performance of sensor measurement dependent state estimation process. The increasing penetration of cyber control into the smart grid operations has raised severe concern for executing a secured state estimation process. The limitation with regard to monitoring large number of sensors allows an intruder to manipulate sensor information, as one of the soft targets for disrupting power system operations. Phasor measurement unit (PMU) can be adopted as an alternative to immunize the state estimation from corrupted conventional sensor measurements. However, the high installation cost of PMUs restricts its installation throughout the network. In this paper a graphical approach is proposed to identify minimum PMU placement locations, so as to detect any intrusion of malicious activity within the smart grid. The high speed synchronized PMU information ensures processing of secured set of sensor measurements to the control center. The results of PMU information based linear state estimation is compared with the conventional non-linear state estimation to detect any attack within the system. The effectiveness of the proposed scheme has been validated on IEEE 14 bus test system.
This paper focuses on the typical business scenario of intelligent factory, it includes the manufacturing process, carries out hierarchical security protection, forms a full coverage industrial control security protection network, completes multi-means industrial control security direct protection, at the same time, it utilizes big data analysis, dynamically analyzes the network security situation, completes security early warning, realizes indirect protection, and finally builds a self sensing and self-adjusting industrial network security protection system It provides a reliable reference for the development of intelligent manufacturing industry.