Visible to the public Biblio

Found 158 results

Filters: Keyword is process control  [Clear All Filters]
2020-01-20
He, Zecheng, Raghavan, Aswin, Hu, Guangyuan, Chai, Sek, Lee, Ruby.  2019.  Power-Grid Controller Anomaly Detection with Enhanced Temporal Deep Learning. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :160–167.
Controllers of security-critical cyber-physical systems, like the power grid, are a very important class of computer systems. Attacks against the control code of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the anomalies can prevent further damage. However, detecting zero-day attacks is extremely challenging because they have no known code and have unknown behavior. Furthermore, if data collected from the controller is transferred to a server through networks for analysis and detection of anomalous behavior, this creates a very large attack surface and also delays detection. In order to address this problem, we propose Reconstruction Error Distribution (RED) of Hardware Performance Counters (HPCs), and a data-driven defense system based on it. Specifically, we first train a temporal deep learning model, using only normal HPC readings from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we run this model using real-time data from commonly available HPCs. We use the proposed RED to enhance the temporal deep learning detection of anomalous behavior, by estimating distribution deviations from the normal behavior with an effective statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with high accuracy (\textbackslashtextgreater99.9%), nearly zero false positives and short (\textbackslashtextless; 360ms) latency.
2020-01-13
Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
2020-01-02
Shabanov, Boris, Sotnikov, Alexander, Palyukh, Boris, Vetrov, Alexander, Alexandrova, Darya.  2019.  Expert System for Managing Policy of Technological Security in Uncertainty Conditions: Architectural, Algorithmic, and Computing Aspects. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1716–1721.

The paper discusses the architectural, algorithmic and computing aspects of creating and operating a class of expert system for managing technological safety of an enterprise, in conditions of a large flow of diagnostic variables. The algorithm for finding a faulty technological chain uses expert information, formed as a set of evidence on the influence of diagnostic variables on the correctness of the technological process. Using the Dempster-Schafer trust function allows determining the overall probability measure on subsets of faulty process chains. To combine different evidence, the orthogonal sums of the base probabilities determined for each evidence are calculated. The procedure described above is converted into the rules of the knowledge base production. The description of the developed prototype of the expert system, its architecture, algorithmic and software is given. The functionality of the expert system and configuration tools for a specific type of production are under discussion.

2019-12-16
Sayin, Muhammed O., Ba\c sar, Tamer.  2018.  Secure Sensor Design for Resiliency of Control Systems Prior to Attack Detection. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1686-1691.

We introduce a new defense mechanism for stochastic control systems with control objectives, to enhance their resilience before the detection of any attacks. To this end, we cautiously design the outputs of the sensors that monitor the state of the system since the attackers need the sensor outputs for their malicious objectives in stochastic control scenarios. Different from the defense mechanisms that seek to detect infiltration or to improve detectability of the attacks, the proposed approach seeks to minimize the damage of possible attacks before they actually have even been detected. We, specifically, consider a controlled Gauss-Markov process, where the controller could have been infiltrated into at any time within the system's operation. Within the framework of game-theoretic hierarchical equilibrium, we provide a semi-definite programming based algorithm to compute the optimal linear secure sensor outputs that enhance the resiliency of control systems prior to attack detection.

2019-12-02
Tseng, Yuchia, Nait-Abdesselam, Farid, Khokhar, Ashfaq.  2018.  SENAD: Securing Network Application Deployment in Software Defined Networks. 2018 IEEE International Conference on Communications (ICC). :1–6.
The Software Defined Networks (SDN) paradigm, often referred to as a radical new idea in networking, promises to dramatically simplify network management by enabling innovation through network programmability. However, notable security issues, such as app-to-control threats, remain a significant concern that impedes SDN from being widely adopted. To cope with those app-to-control threats, this paper proposes a solution to securely deploy valid network applications while protecting the SDN controller against the injection of the malicious application. This problem is mitigated by proposing a novel SDN architecture, dubbed SENAD, which splits the well-known SDN controller into: (1) a data plane controller (DPC), and (2) an application plane controller (APC), to secure this latter by design. The role of the DPC is dedicated for interpreting the network rules into OpenFlow entries and maintaining the communication with the data plane. The role of the APC, however, is to provide a secured runtime for deploying the network applications, including authentication, access control, resource isolation, control, and monitoring applications. We show that this approach can easily shield against any deny of service, caused for instance by the resource exhaustion attack or the malicious command injection, that is caused by the co-existence of a malicious application on the controller's runtime. The evaluation of our architecture shows that the packet\_in messages take less than 5 ms to be delivered from the data plane to the application plane on the long range.
2019-11-12
Hu, Yayun, Li, Dongfang.  2019.  Formal Verification Technology for Asynchronous Communication Protocol. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :482-486.

For aerospace FPGA software products, traditional simulation method faces severe challenges to verify product requirements under complicated scenarios. Given the increasing maturity of formal verification technology, this method can significantly improve verification work efficiency and product design quality, by expanding coverage on those "blind spots" in product design which were not easily identified previously. Taking UART communication as an example, this paper proposes several critical points to use formal verification for asynchronous communication protocol. Experiments and practices indicate that formal verification for asynchronous communication protocol can effectively reduce the time required, ensure a complete verification process and more importantly, achieve more accurate and intuitive results.

2019-09-11
Moyne, J., Mashiro, S., Gross, D..  2018.  Determining a Security Roadmap for the Microelectronics Industry. 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). :291–294.

The evolution of the microelectronics manufacturing industry is characterized by increased complexity, analysis, integration, distribution, data sharing and collaboration, all of which is enabled by the big data explosion. This evolution affords a number of opportunities in improved productivity and quality, and reduced cost, however it also brings with it a number of risks associated with maintaining security of data systems. The International Roadmap for Devices and System Factory Integration International Focus Team (IRDS FI IFT) determined that a security technology roadmap for the industry is needed to better understand the needs, challenges and potential solutions for security in the microelectronics industry and its supply chain. As a first step in providing this roadmap, the IFT conducted a security survey, soliciting input from users, suppliers and OEMs. Preliminary results indicate that data partitioning with IP protection is the number one topic of concern, with the need for industry-wide standards as the second most important topic. Further, the "fear" of security breach is considered to be a significant hindrance to Advanced Process Control efforts as well as use of cloud-based solutions. The IRDS FI IFT will endeavor to provide components of a security roadmap for the industry in the 2018 FI chapter, leveraging the output of the survey effort combined with follow-up discussions with users and consultations with experts.

2019-08-05
Severson, T., Rodriguez-Seda, E., Kiriakidis, K., Croteau, B., Krishnankutty, D., Robucci, R., Patel, C., Banerjee, N..  2018.  Trust-Based Framework for Resilience to Sensor-Targeted Attacks in Cyber-Physical Systems. 2018 Annual American Control Conference (ACC). :6499-6505.

Networked control systems improve the efficiency of cyber-physical plants both functionally, by the availability of data generated even in far-flung locations, and operationally, by the adoption of standard protocols. A side-effect, however, is that now the safety and stability of a local process and, in turn, of the entire plant are more vulnerable to malicious agents. Leveraging the communication infrastructure, the authors here present the design of networked control systems with built-in resilience. Specifically, the paper addresses attacks known as false data injections that originate within compromised sensors. In the proposed framework for closed-loop control, the feedback signal is constructed by weighted consensus of estimates of the process state gathered from other interconnected processes. Observers are introduced to generate the state estimates from the local data. Side-channel monitors are attached to each primary sensor in order to assess proper code execution. These monitors provide estimates of the trust assigned to each observer output and, more importantly, independent of it; these estimates serve as weights in the consensus algorithm. The authors tested the concept on a multi-sensor networked physical experiment with six primary sensors. The weighted consensus was demonstrated to yield a feedback signal within specified accuracy even if four of the six primary sensors were injecting false data.

2019-05-09
Ivanov, A. V., Sklyarov, V. A..  2018.  The Urgency of the Threats of Attacks on Interfaces and Field-Layer Protocols in Industrial Control Systems. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). :162-165.

The paper is devoted to analysis of condition of executing devices and sensors of Industrial Control Systems information security. The work contains structures of industrial control systems divided into groups depending on system's layer. The article contains the analysis of analog interfaces work and work features of data transmission protocols in industrial control system field layer. Questions about relevance of industrial control systems information security, both from the point of view of the information security occurring incidents, and from the point of view of regulators' reaction in the form of normative legal acts, are described. During the analysis of the information security systems of industrial control systems a possibility of leakage through technical channels of information leakage at the field layer was found. Potential vectors of the attacks on devices of field layer and data transmission network of an industrial control system are outlined in the article. The relevance analysis of the threats connected with the attacks at the field layer of an industrial control system is carried out, feature of this layer and attractiveness of this kind of attacks is observed.

Lu, G., Feng, D..  2018.  Network Security Situation Awareness for Industrial Control System Under Integrity Attacks. 2018 21st International Conference on Information Fusion (FUSION). :1808-1815.

Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.

2019-03-25
Pawlenka, T., Škuta, J..  2018.  Security system based on microcontrollers. 2018 19th International Carpathian Control Conference (ICCC). :344–347.
The article describes design and realization of security system based on single-chip microcontrollers. System includes sensor modules for unauthorized entrance detection based on magnetic contact, measuring carbon monoxide level, movement detection and measuring temperature and humidity. System also includes control unit, control panel and development board Arduino with ethernet interface connected for web server implementation.
2019-02-14
Schuette, J., Brost, G. S..  2018.  LUCON: Data Flow Control for Message-Based IoT Systems. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :289-299.

Today's emerging Industrial Internet of Things (IIoT) scenarios are characterized by the exchange of data between services across enterprises. Traditional access and usage control mechanisms are only able to determine if data may be used by a subject, but lack an understanding of how it may be used. The ability to control the way how data is processed is however crucial for enterprises to guarantee (and provide evidence of) compliant processing of critical data, as well as for users who need to control if their private data may be analyzed or linked with additional information - a major concern in IoT applications processing personal information. In this paper, we introduce LUCON, a data-centric security policy framework for distributed systems that considers data flows by controlling how messages may be routed across services and how they are combined and processed. LUCON policies prevent information leaks, bind data usage to obligations, and enforce data flows across services. Policy enforcement is based on a dynamic taint analysis at runtime and an upfront static verification of message routes against policies. We discuss the semantics of these two complementing enforcement models and illustrate how LUCON policies are compiled from a simple policy language into a first-order logic representation. We demonstrate the practical application of LUCON in a real-world IoT middleware and discuss its integration into Apache Camel. Finally, we evaluate the runtime impact of LUCON and discuss performance and scalability aspects.

2018-10-26
Ulz, T., Pieber, T., Steger, C., Matischek, R., Bock, H..  2017.  Towards trustworthy data in networked control systems: A hardware-based approach. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

The importance of Networked Control Systems (NCS) is steadily increasing due to recent trends such as smart factories. Correct functionality of such NCS needs to be protected as malfunctioning systems could have severe consequences for the controlled process or even threaten human lives. However, with the increase in NCS, also attacks targeting these systems are becoming more frequent. To mitigate attacks that utilize captured sensor data in an NCS, transferred data needs to be protected. While using well-known methods such as Transport Layer Security (TLS) might be suitable to protect the data, resource constraint devices such as sensors often are not powerful enough to perform the necessary cryptographic operations. Also, as we will show in this paper, applying simple encryption in an NCS may enable easy Denial-of-Service (DoS) attacks by attacking single bits of the encrypted data. Therefore, in this paper, we present a hardware-based approach that enables sensors to perform the necessary encryption while being robust against (injected) bit failures.

2018-09-28
Brandauer, C., Dorfinger, P., Paiva, P. Y. A..  2017.  Towards scalable and adaptable security monitoring. 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC). :1–6.

A long time ago Industrial Control Systems were in a safe place due to the use of proprietary technology and physical isolation. This situation has changed dramatically and the systems are nowadays often prone to severe attacks executed from remote locations. In many cases, intrusions remain undetected for a long time and this allows the adversary to meticulously prepare an attack and maximize its destructiveness. The ability to detect an attack in its early stages thus has a high potential to significantly reduce its impact. To this end, we propose a holistic, multi-layered, security monitoring and mitigation framework spanning the physical- and cyber domain. The comprehensiveness of the approach demands for scalability measures built-in by design. In this paper we present how scalability is addressed by an architecture that enforces geographically decentralized data reduction approaches that can be dynamically adjusted to the currently perceived context. A specific focus is put on a robust and resilient solution to orchestrate dynamic configuration updates. Experimental results based on a prototype implementation show the feasibility of the approach.

2018-08-23
Xia, D., Zhang, Y..  2017.  The fuzzy control of trust establishment. 2017 4th International Conference on Systems and Informatics (ICSAI). :655–659.

In the open network environment, the strange entities can establish the mutual trust through Automated Trust Negotiation (ATN) that is based on exchanging digital credentials. In traditional ATN, the attribute certificate required to either satisfied or not, and in the strategy, the importance of the certificate is same, it may cause some unnecessary negotiation failure. And in the actual situation, the properties is not just 0 or 1, it is likely to between 0 and 1, so the satisfaction degree is different, and the negotiation strategy need to be quantified. This paper analyzes the fuzzy negotiation process, in order to improve the trust establishment in high efficiency and accuracy further.

2018-06-11
Crabtree, A., Lodge, T., Colley, J., Greenghalgh, C., Mortier, R..  2017.  Accountable Internet of Things? Outline of the IoT databox model 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). :1–6.

This paper outlines the IoT Databox model as a means of making the Internet of Things (IoT) accountable to individuals. Accountability is a key to building consumer trust and mandated in data protection legislation. We briefly outline the `external' data subject accountability requirement specified in actual legislation in Europe and proposed legislation in the US, and how meeting requirement this turns on surfacing the invisible actions and interactions of connected devices and the social arrangements in which they are embedded. The IoT Databox model is proposed as an in principle means of enabling accountability and providing individuals with the mechanisms needed to build trust in the IoT.

2018-05-24
Genge, B., Duka, A. V., Haller, P., Crainicu, B., Sándor, H., Graur, F..  2017.  Design, Verification and Implementation of a Lightweight Remote Attestation Protocol for Process Control Systems. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). :75–82.

Until recently, IT security received limited attention within the scope of Process Control Systems (PCS). In the past, PCS consisted of isolated, specialized components running closed process control applications, where hardware was placed in physically secured locations and connections to remote network infrastructures were forbidden. Nowadays, industrial communications are fully exploiting the plethora of features and novel capabilities deriving from the adoption of commodity off the shelf (COTS) hardware and software. Nonetheless, the reliance on COTS for remote monitoring, configuration and maintenance also exposed PCS to significant cyber threats. In light of these issues, this paper presents the steps for the design, verification and implementation of a lightweight remote attestation protocol. The protocol is aimed at providing a secure software integrity verification scheme that can be readily integrated into existing industrial applications. The main novelty of the designed protocol is that it encapsulates key elements for the protection of both participating parties (i.e., verifier and prover) against cyber attacks. The protocol is formally verified for correctness with the help of the Scyther model checking tool. The protocol implementation and experimental results are provided for a Phoenix-Contact industrial controller, which is widely used in the automation of gas transportation networks in Romania.

2018-05-09
Atli, A. V., Uluderya, M. S., Tatlicioglu, S., Gorkemli, B., Balci, A. M..  2017.  Protecting SDN controller with per-flow buffering inside OpenFlow switches. 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.

Software Defined Networking (SDN) is a paradigm shift that changes the working principles of IP networks by separating the control logic from routers and switches, and logically centralizing it within a controller. In this architecture the control plane (controller) communicates with the data plane (switches) through a control channel using a standards-compliant protocol, that is, OpenFlow. While having a centralized controller creates an opportunity to monitor and program the entire network, as a side effect, it causes the control plane to become a single point of failure. Denial of service (DoS) attacks or even heavy control traffic conditions can easily become real threats to the proper functioning of the controller, which indirectly detriments the entire network. In this paper, we propose a solution to reduce the control traffic generated primarily during table-miss events. We utilize the buffer\_id feature of the OpenFlow protocol, which has been designed to identify individually buffered packets within a switch, reusing it to identify flows buffered as a series of packets during table-miss, which happens when there is no related rule in the switch flow tables that matches the received packet. Thus, we allow the OpenFlow switch to send only the first packet of a flow to the controller for a table-miss while buffering the rest of the packets in the switch memory until the controller responds or time out occurs. The test results show that OpenFlow traffic is significantly reduced when the proposed method is used.

Shan-Shan, J., Ya-Bin, X..  2017.  The APT detection method in SDN. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1240–1245.

SDN is a new network framework which can be controlled and defined by software programming, and OpenFlow is the communication protocol between SDN controller plane and data plane. With centralized control of SDN, the network is more vulnerable encounter APT than traditional network. After deeply analyzing the process of APT at each stage in SDN, this paper proposes the APT detection method based on HMM, which can fully reflect the relationship between attack behavior and APT stage. Experiment shows that the method is more accurate to detect APT in SDN, and less overhead.

2018-02-21
Drias, Z., Serhrouchni, A., Vogel, O..  2017.  Identity-based cryptography (IBC) based key management system (KMS) for industrial control systems (ICS). 2017 1st Cyber Security in Networking Conference (CSNet). :1–10.

Often considered as the brain of an industrial process, Industrial control systems are presented as the vital part of today's critical infrastructure due to their crucial role in process control and monitoring. Any failure or error in the system will have a considerable damage. Their openness to the internet world raises the risk related to cyber-attacks. Therefore, it's necessary to consider cyber security challenges while designing an ICS in order to provide security services such as authentication, integrity, access control and secure communication channels. To implement such services, it's necessary to provide an efficient key management system (KMS) as an infrastructure for all cryptographic operations, while preserving the functional characteristics of ICS. In this paper we will analyze existing KMS and their suitability for ICS, then we propose a new KMS based on Identity Based Cryptography (IBC) as a better alternative to traditional KMS. In our proposal, we consider solving two security problems in IBC which brings it up to be more suitable for ICS.

2018-02-02
Matias, J., Garay, J., Jacob, E., Sköldström, P., Ghafoor, A..  2016.  FlowSNAC: Improving FlowNAC with Secure Scaling and Resiliency. 2016 Fifth European Workshop on Software-Defined Networks (EWSDN). :59–61.

Life-cycle management of stateful VNF services is a complicated task, especially when automated resiliency and scaling should be handled in a secure manner, without service degradation. We present FlowSNAC, a resilient and scalable VNF service for user authentication and service deployment. FlowSNAC consists of both stateful and stateless components, some of that are SDN-based and others that are NFVs. We describe how it adapts to changing conditions by automatically updating resource allocations through a series of intermediate steps of traffic steering, resource allocation, and secure state transfer. We conclude by highlighting some of the lessons learned during implementation, and their wider consequences for the architecture of SDN/NFV management and orchestration systems.

2018-01-23
Babu, V., Kumar, R., Nguyen, H. H., Nicol, D. M., Palani, K., Reed, E..  2017.  Melody: Synthesized datasets for evaluating intrusion detection systems for the smart grid. 2017 Winter Simulation Conference (WSC). :1061–1072.

As smart grid systems become increasingly reliant on networks of control devices, attacks on their inherent security vulnerabilities could lead to catastrophic system failures. Network Intrusion Detection Systems(NIDS) detect such attacks by learning traffic patterns and finding anomalies in them. However, availability of data for robust training and evaluation of NIDS is rare due to associated operational and security risks of sharing such data. Consequently, we present Melody, a scalable framework for synthesizing such datasets. Melody models both, the cyber and physical components of the smart grid by integrating a simulated physical network with an emulated cyber network while using virtual time for high temporal fidelity. We present a systematic approach to generate traffic representing multi-stage attacks, where each stage is either emulated or recreated with a mechanism to replay arbitrary packet traces. We describe and evaluate the suitability of Melodys datasets for intrusion detection, by analyzing the extent to which temporal accuracy of pertinent features is maintained.

2018-01-16
Boite, J., Nardin, P. A., Rebecchi, F., Bouet, M., Conan, V..  2017.  Statesec: Stateful monitoring for DDoS protection in software defined networks. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–9.

Software-Defined Networking (SDN) allows for fast reactions to security threats by dynamically enforcing simple forwarding rules as counter-measures. However, in classic SDN all the intelligence resides at the controller, with the switches only capable of performing stateless forwarding as ruled by the controller. It follows that the controller, in addition to network management and control duties, must collect and process any piece of information required to take advanced (stateful) forwarding decisions. This threatens both to overload the controller and to congest the control channel. On the other hand, stateful SDN represents a new concept, developed both to improve reactivity and to offload the controller and the control channel by delegating local treatments to the switches. In this paper, we adopt this stateful paradigm to protect end-hosts from Distributed Denial of Service (DDoS). We propose StateSec, a novel approach based on in-switch processing capabilities to detect and mitigate DDoS attacks. StateSec monitors packets matching configurable traffic features (e.g., IP src/dst, port src/dst) without resorting to the controller. By feeding an entropy-based algorithm with such monitoring features, StateSec detects and mitigates several threats such as (D)DoS and port scans with high accuracy. We implemented StateSec and compared it with a state-of-the-art approach to monitor traffic in SDN. We show that StateSec is more efficient: it achieves very accurate detection levels, limiting at the same time the control plane overhead.

2018-01-10
Ahmed, C. M., Mathur, A. P..  2017.  Hardware Identification via Sensor Fingerprinting in a Cyber Physical System. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :517–524.

A lot of research in security of cyber physical systems focus on threat models where an attacker can spoof sensor readings by compromising the communication channel. A little focus is given to attacks on physical components. In this paper a method to detect potential attacks on physical components in a Cyber Physical System (CPS) is proposed. Physical attacks are detected through a comparison of noise pattern from sensor measurements to a reference noise pattern. If an adversary has physically modified or replaced a sensor, the proposed method issues an alert indicating that a sensor is probably compromised or is defective. A reference noise pattern is established from the sensor data using a deterministic model. This pattern is referred to as a fingerprint of the corresponding sensor. The fingerprint so derived is used as a reference to identify measured data during the operation of a CPS. Extensive experimentation with ultrasonic level sensors in a realistic water treatment testbed point to the effectiveness of the proposed fingerprinting method in detecting physical attacks.

2017-12-20
Rebaï, S. Bezzaoucha, Voos, H., Darouach, M..  2017.  A contribution to cyber-security of networked control systems: An event-based control approach. 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). :1–7.
In the present paper, a networked control system under both cyber and physical attacks Is considered. An adapted formulation of the problem under physical attacks, data deception and false data injection attacks, is used for controller synthesis. Based on the classical fault tolerant detection (FTD) tools, a residual generator for attack/fault detection based on observers is proposed. An event-triggered and Bilinear Matrix Inequality (BMI) implementation is proposed in order to achieve novel and better security strategy. The purpose in using this implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. It is important to note that the main contribution of this paper is to establish the adequate event-triggered and BMI-based methodology so that the particular structure of the mixed attacked/faulty structure can be re-formulated within the classical FTD paradigm. Experimental results are given to illustrate the developed approach efficiency on a pilot three-tank system. The plant model is presented and the proposed control design is applied to the system.