Visible to the public Biblio

Found 2387 results

Filters: Keyword is human factors  [Clear All Filters]
2022-02-22
Zhang, Kun, Wang, Yubo, Ning, Zhenhu.  2021.  Certificateless Peer-to-Peer Key Agreement Protocol for the Perception Layer of Internet of Things. 2021 6th International Conference on Image, Vision and Computing (ICIVC). :436—440.
Due to the computing capability limitation of the Internet of things devices in the perception layer, the traditional security solutions are difficult to be used directly. How to design a new lightweight, secure and reliable protocol suitable for the Internet of Things application environment, and realize the secure transmission of information among many sensing checkpoints is an urgent problem to be solved. In this paper, we propose a decentralized lightweight authentication key protocol based on the combination of public key and trusted computing technology, which is used to establish secure communication between nodes in the perception layer. The various attacks that the protocol may suffer are analyzed, and the formal analysis method is used to verify the security of the protocol. To verify the validity of the protocol, the computation and communication cost of the protocol are compared with the existing key protocols. And the results show that the protocol achieved the promised performance.
Nimer, Lina, Tahat, Ashraf.  2021.  Implementation of a Peer-to-Peer Network Using Blockchain to Manage and Secure Electronic Medical Records. 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :187—192.
An electronic medical record (EMR) is the digital medical data of a patient, and they are healthcare system's most valuable asset. In this paper, we introduce a decentralized network using blockchain technology and smart contracts as a solution to manage and secure medical records storing, and transactions between medical healthcare providers. Ethereum blockchain is employed to build the blockchain. Solidity object-oriented language was utilized to implement smart contracts to digitally facilitate and verify transactions across the network (creating records, access requests, permitting access, revoking access, rejecting access). This will mitigate prevailing issues of current systems and enhance their performance, since current EMRs are stored on a centralized database, which cannot guarantee data integrity and security, consequently making them susceptible to malicious attacks. Our proposed system approach is of vital importance considering that healthcare providers depend on various tests in making a decision about a patient's diagnosis, and the respective plan of treatment they will go through. These tests are not shared with other providers, while data is scattered on various systems, as a consequence of these ensuing scenarios, patients suffer of the resulting care provided. Moreover, blockchain can meliorate the motley serious challenges caused by future use of IoT devices that provide real-time data from patients. Therefore, integrating the two technologies will produce decentralized IoT based healthcare systems.
Musa, Ahmad Sanda, Awan, Irfan-Ullah, Abobaker, Ibrahim.  2021.  Efficacy of ADDIE Model in Peer-to-Peer Networks: Digital Evidence Investigation. 2021 8th International Conference on Future Internet of Things and Cloud (FiCloud). :177—183.
While the need for content distribution proliferates - becoming more mammoth and complex on the Internet - the P2P network perseveres as one of the best avenues to service the demand for content distribution. It enjoys a wide range of clients that transport data in bits securely, making it susceptible to moving dubious contents, hence becoming exposed to varying security threats that require credible digital investigation to address. The tools and techniques used in performing digital investigations are still mostly lagging, successfully slowing down law enforcement agencies in general. The acquisition of digital evidence over the Internet is still elusive in the battle against cybercrime. This paper considers a new technique for detecting passive peers that participate in a P2P network. As part of our study, we crawled the µTorrent P2P client over 10 days while logging all participating peers. We then employed digital forensic techniques to analyze the popular users and generate evidence within them with high accuracy. Finally, we evaluated our proposed approach against the standard Analysis, Design, Development, Implementation, and Evaluation, or ADDIE model for digital investigation to arrive at the credible digital evidence presented in this paper.
Singh, Ashwini Kumar, Kushwaha, Nagendra.  2021.  Software and Hardware Security of IoT. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—5.
With the tremendous growth of IoT application, providing security to IoT systems has become more critical. In this paper, a technique is presented to ensure the safety of Internet of Things (IoT) devices. This technique ensures hardware and software security of IoT devices. Blockchain technology is used for software security and hardware logics are used for hardware security. For enabling a Blockchain, Ethereum Network is used for secure peer-to-peer transmission. A prototype model is also used using two IoT nodes to demonstrate the security logic.
Wink, Tobias, Nochta, Zoltan.  2021.  An Approach for Peer-to-Peer Federated Learning. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :150—157.
We present a novel approach for the collaborative training of neural network models in decentralized federated environments. In the iterative process a group of autonomous peers run multiple training rounds to train a common model. Thereby, participants perform all model training steps locally, such as stochastic gradient descent optimization, using their private, e.g. mission-critical, training datasets. Based on locally updated models, participants can jointly determine a common model by averaging all associated model weights without sharing the actual weight values. For this purpose we introduce a simple n-out-of-n secret sharing schema and an algorithm to calculate average values in a peer-to-peer manner. Our experimental results with deep neural networks on well-known sample datasets prove the generic applicability of the approach, with regard to model quality parameters. Since there is no need to involve a central service provider in model training, the approach can help establish trustworthy collaboration platforms for businesses with high security and data protection requirements.
Sen, Adnan Ahmed Abi, Nazar, Shamim Kamal Abdul, Osman, Nazik Ahmed, Bahbouh, Nour Mahmoud, Aloufi, Hazim Faisal, Alawfi, Ibrahim Moeed M..  2021.  A New Technique for Managing Reputation of Peers in the Cooperation Approach for Privacy Protection. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :409—412.
Protecting privacy of the user location in Internet of Things (IoT) applications is a complex problem. Peer-to-peer (P2P) approach is one of the most popular techniques used to protect privacy in IoT applications, especially that use the location service. The P2P approach requires trust among peers in addition to serious cooperation. These requirements are still an open problem for this approach and its methods. In this paper, we propose an effective solution to this issue by creating a manager for the peers' reputation called R-TTP. Each peer has a new query. He has to evaluate the cooperated peer. Depending on the received result of that evaluation, the main peer will send multiple copies of the same query to multiple peers and then compare results. Moreover, we proposed another scenario to the manager of reputation by depending on Fog computing to enhance both performance and privacy. Relying on this work, a user can determine the most suitable of many available cooperating peers, while avoiding the problems of putting up with an inappropriate cooperating or uncommitted peer. The proposed method would significantly contribute to developing most of the privacy techniques in the location-based services. We implemented the main functions of the proposed method to confirm its effectiveness, applicability, and ease of application.
2022-02-04
Biswas, Ananda, Dee, Timothy M., Guo, Yunxi, Li, Zelong, Tyagi, Akhilesh.  2021.  Multi-Granularity Control Flow Anomaly Detection with Hardware Counters. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :449—454.
Hardware counters are included in processors to count microarchitecture level events affecting performance. When control flow anomalies caused by attacks such as buffer overflow or return oriented programming (ROP) occur, they leave a microarchitectural footprint. Hardware counters reflect such footprints to flag control flow anomalies. This paper is geared towards buffer overflow and ROP control flow anomaly detection in embedded programs. The targeted program entities are main event loops and task/event handlers. Embedded systems also have enhanced need for variable anomaly detection time in order to meet the system response time requirements. We propose a novel repurposing of Patt-Yeh two level branch predictor data structure for abstracting/hashing HW counter signatures to support such variable anomaly detection times. The proposed anomaly detection mechanism is evaluated on some generic benchmark programs and ArduPilot - a popular autopilot software. Experimental evaluation encompasses both Intel X86 and ARM Cortex M processors. DWT within Cortex M provides sufficiently interesting program level event counts to capture these control flow anomalies. We are able to achieve 97-99%+ accuracy with 1-10 micro-second time overhead per anomaly check.
Roney, James, Appel, Troy, Pinisetti, Prateek, Mickens, James.  2021.  Identifying Valuable Pointers in Heap Data. 2021 IEEE Security and Privacy Workshops (SPW). :373—382.
Historically, attackers have sought to manipulate programs through the corruption of return addresses, function pointers, and other control flow data. However, as protections like ASLR, stack canaries, and no-execute bits have made such attacks more difficult, data-oriented exploits have received increasing attention. Such exploits try to subvert a program by reading or writing non-control data, without introducing any foreign code or violating the program’s legitimate control flow graph. Recently, a data-oriented exploitation technique called memory cartography was introduced, in which an attacker navigates between allocated memory regions using a precompiled map to disclose sensitive program data. The efficacy of memory cartography is dependent on inter-region pointers being located at constant offsets within memory regions; thus, cartographic attacks are difficult to launch against memory regions like heaps and stacks that have nondeterministic layouts. In this paper, we lower the barrier to successful attacks against nondeterministic memory, demonstrating that pointers between regions of memory often possess unique “signatures” that allow attackers to identify them with high accuracy. These signatures are accurate even when the pointers reside in non-deterministic memory areas. In many real-world programs, this allows an attacker that is capable of reading bytes from a single heap to access all of process memory. Our findings underscore the importance of memory isolation via separate address spaces.
Xu, Qizhen, Chen, Liwei, Shi, Gang.  2021.  Twine Stack: A Hybrid Mechanism Achieving Less Cost for Return Address Protection. 2021 IEEE 30th Asian Test Symposium (ATS). :7—12.
Return-oriented programming(ROP) is a prevalent technique that targets return addresses to hijack control flow. To prevent such attack, researchers mainly focus on either Shadow Stack or MAC-based mechanisms(message code authentication). But Shadow Stack suffers from additional memory overhead and information leakage, while MAC-based mechanisms(e.g. Zipper Stack) impose high runtime overhead for MAC calculations.In this paper, we propose Twine Stack, a hybrid and efficient return address protection mechanism with lightweight hardware extension. It utilizes a tiny hardware shadow stack to realize a new multi-chain Zipper Stack. Specifically, each entry in the shadow stack stores a return address and its MAC in each chain, allowing queueing calculation with just one hash module. At meantime, some return address verifications could be done by comparison with the hardware shadow stack, instead of calculation again. We implemented Twine Stack on RISC-V architecture, and evaluated it on FPGA board. Our experiments show that Twine Stack reduces over 95% hash verifications, and imposes merely 1.38% performance overhead with an area overhead of 974 LUTs and 726 flip flops. The result demonstrates that our hybrid scheme mitigates the drawbacks of each separate scheme.
Jinhui, Yuan, Hongwei, Zhou, Laisun, Zhang.  2021.  RSGX: Defeating SGX Side Channel Attack with Return Oriented Programming. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1094—1098.
Intel SGX provides a new method to protect software privacy data, but it faces the security risk of side channel attack. In our opinion, SGX side channel attack depend on the implicit mapping between control flow and data flow to infer privacy data indirectly with control flow. For this reason, we propose code reuse to construct dynamic control flow software. In this method, by loading a large number of related gadgets in advance, the software reset the software control data according to the original software semantics at runtime, so that the software control flow can change dynamically heavily. Based on code reuse, we make the software control flow change dynamically, and the mapping between control flow and data flow more complex and difficult to determine, which can increase the difficulty of SGX side channel attack.
AbdElaal, AbdElaziz Saad AbdElaziz, Lehniger, Kai, Langendorfer, Peter.  2021.  Incremental code updates exploitation as a basis for return oriented programming attacks on resource-constrained devices. 2021 5th Cyber Security in Networking Conference (CSNet). :55—62.
Code-reuse attacks pose a threat to embedded devices since they are able to defeat common security defenses such as non-executable stacks. To succeed in his code-reuse attack, the attacker has to gain knowledge of some or all of the instructions of the target firmware/software. In case of a bare-metal firmware that is protected from being dumped out of a device, it is hard to know the running instructions of the target firmware. This consequently makes code-reuse attacks more difficult to achieve. This paper shows how an attacker can gain knowledge of some of these instructions by sniffing the unencrypted incremental updates. These updates exist to reduce the radio reception power for resource-constrained devices. Based on the literature, these updates are checked against authentication and integrity, but they are sometimes sent unencrypted. Therefore, it will be demonstrated how a Return-Oriented Programming (ROP) attack can be accomplished using only the passively sniffed incremental updates. The generated updates of the R3diff and Delta Generator (DG) differencing algorithms will be under assessment. The evaluation reveals that both of them can be exploited by the attacker. It also shows that the DG generated updates leak more information than the R3diff generated updates. To defend against this attack, different countermeasures that consider different power consumption scenarios are proposed, but yet to be evaluated.
Borrello, Pietro, Coppa, Emilio, D’Elia, Daniele Cono.  2021.  Hiding in the Particles: When Return-Oriented Programming Meets Program Obfuscation. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :555—568.
Largely known for attack scenarios, code reuse techniques at a closer look reveal properties that are appealing also for program obfuscation. We explore the popular return-oriented programming paradigm under this light, transforming program functions into ROP chains that coexist seamlessly with the surrounding software stack. We show how to build chains that can withstand popular static and dynamic deobfuscation approaches, evaluating the robustness and overheads of the design over common programs. The results suggest a significant amount of computational resources would be required to carry a deobfuscation attack for secret finding and code coverage goals.
Uroz, Daniel, Rodríguez, Ricardo J..  2021.  Evaluation of the Executional Power in Windows using Return Oriented Programming. 2021 IEEE Security and Privacy Workshops (SPW). :361—372.
Code-reuse techniques have emerged as a way to defeat the control-flow defenses that prevent the injection and execution of new code, as they allow an adversary to hijack the control flow of a victim program without injected code. A well-known code-reuse attack technique is Return-OrientedProgramming (ROP), which considers and links together (relatively short) code snippets, named ROP gadgets, already present in the victim’s memory address space through a controlled use of the stack values of the victim program. Although ROP attacks are known to be Turing-complete, there are still open question such as the quantification of the executional power of an adversary, which is determined by whatever code exists in the memory of a victim program, and whether an adversary can build a ROP chain, made up of ROP gadgets, for any kind of algorithm. To fill these gaps, in this paper we first define a virtual language, dubbed ROPLANG, that defines a set of operations (specifically, arithmetic, assignment, dereference, logical, and branching operations) which are mapped to ROP gadgets. We then use it to evaluate the executional power of an adversary in Windows 7 and Windows 10, in both 32- and 64-bit versions. In addition, we have developed ROP3, a tool that accepts a set of program files and a ROP chain described with our language and returns the code snippets that make up the ROP chain. Our results show that there are enough ROP gadgets to simulate any virtual operation and that branching operations are the less frequent ones. As expected, our results also indicate that the larger a program file is, the more likely to find ROP gadgets within it for every virtual operation.
2022-02-03
Xu, Chengtao, Song, Houbing.  2021.  Mixed Initiative Balance of Human-Swarm Teaming in Surveillance via Reinforcement learning. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). :1—10.
Human-machine teaming (HMT) operates in a context defined by the mission. Varying from the complexity and disturbance in the cooperation between humans and machines, a single machine has difficulty handling work with humans in the scales of efficiency and workload. Swarm of machines provides a more feasible solution in such a mission. Human-swarm teaming (HST) extends the concept of HMT in the mission, such as persistent surveillance, search-and-rescue, warfare. Bringing the concept of HST faces several scientific challenges. For example, the strategies of allocation on the high-level decision making. Here, human usually plays the supervisory or decision making role. Performance of such fixed structure of HST in actual mission operation could be affected by the supervisor’s status from many aspects, which could be considered in three general parts: workload, situational awareness, and trust towards the robot swarm teammate and mission performance. Besides, the complexity of a single human operator in accessing multiple machine agents increases the work burdens. An interface between swarm teammates and human operators to simplify the interaction process is desired in the HST.In this paper, instead of purely considering the workload of human teammates, we propose the computational model of human swarm interaction (HSI) in the simulated map surveillance mission. UAV swarm and human supervisor are both assigned in searching a predefined area of interest (AOI). The workload allocation of map monitoring is adjusted based on the status of the human worker and swarm teammate. Workload, situation awareness ability, trust are formulated as independent models, which affect each other. A communication-aware UAV swarm persistent surveillance algorithm is assigned in the swarm autonomy portion. With the different surveillance task loads, the swarm agent’s thrust parameter adjusts the autonomy level to fit the human operator’s needs. Reinforcement learning is applied in seeking the relative balance of workload in both human and swarm sides. Metrics such as mission accomplishment rate, human supervisor performance, mission performance of UAV swarm are evaluated in the end. The simulation results show that the algorithm could learn the human-machine trust interaction to seek the workload balance to reach better mission execution performance. This work inspires us to leverage a more comprehensive HST model in more practical HMT application scenarios.
García, Kimberly, Zihlmann, Zaira, Mayer, Simon, Tamò-Larrieux, Aurelia, Hooss, Johannes.  2021.  Towards Privacy-Friendly Smart Products. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—7.
Smart products, such as toy robots, must comply with multiple legal requirements of the countries they are sold and used in. Currently, compliance with the legal environment requires manually customizing products for different markets. In this paper, we explore a design approach for smart products that enforces compliance with aspects of the European Union’s data protection principles within a product’s firmware through a toy robot case study. To this end, we present an exchange between computer scientists and legal scholars that identified the relevant data flows, their processing needs, and the implementation decisions that could allow a device to operate while complying with the EU data protection law. By designing a data-minimizing toy robot, we show that the variety, amount, and quality of data that is exposed, processed, and stored outside a user’s premises can be considerably reduced while preserving the device’s functionality. In comparison with a robot designed using a traditional approach, in which 90% of the collected types of information are stored by the data controller or a remote service, our proposed design leads to the mandatory exposure of only 7 out of 15 collected types of information, all of which are legally required by the data controller to demonstrate consent. Moreover, our design is aligned with the Data Privacy Vocabulary, which enables the toy robot to cross geographic borders and seamlessly adjust its data processing activities to the local regulations.
Battistuzzi, Linda, Grassi, Lucrezia, Recchiuto, Carmine Tommaso, Sgorbissa, Antonio.  2021.  Towards Ethics Training in Disaster Robotics: Design and Usability Testing of a Text-Based Simulation. 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :104—109.
Rescue robots are expected to soon become commonplace at disaster sites, where they are increasingly being deployed to provide rescuers with improved access and intervention capabilities while mitigating risks. The presence of robots in operation areas, however, is likely to carry a layer of additional ethical complexity to situations that are already ethically challenging. In addition, limited guidance is available for ethically informed, practical decision-making in real-life disaster settings, and specific ethics training programs are lacking. The contribution of this paper is thus to propose a tool aimed at supporting ethics training for rescuers operating with rescue robots. To this end, we have designed an interactive text-based simulation. The simulation was developed in Python, using Tkinter, Python's de-facto standard GUI. It is designed in accordance with the Case-Based Learning approach, a widely used instructional method that has been found to work well for ethics training. The simulation revolves around a case grounded in ethical themes we identified in previous work on ethical issues in rescue robotics: fairness and discrimination, false or excessive expectations, labor replacement, safety, and trust. Here we present the design of the simulation and the results of usability testing.
Maksuti, Silia, Pickem, Michael, Zsilak, Mario, Stummer, Anna, Tauber, Markus, Wieschhoff, Marcus, Pirker, Dominic, Schmittner, Christoph, Delsing, Jerker.  2021.  Establishing a Chain of Trust in a Sporadically Connected Cyber-Physical System. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :890—895.
Drone based applications have progressed significantly in recent years across many industries, including agriculture. This paper proposes a sporadically connected cyber-physical system for assisting winemakers and minimizing the travel time to remote and poorly connected infrastructures. A set of representative diseases and conditions, which will be monitored by land-bound sensors in combination with multispectral images, is identified. To collect accurate data, a trustworthy and secured communication of the drone with the sensors and the base station should be established. We propose to use an Internet of Things framework for establishing a chain of trust by securely onboarding drones, sensors and base station, and providing self-adaptation support for the use case. Furthermore, we perform a security analysis of the use case for identifying potential threats and security controls that should be in place for mitigating them.
Pang, Yijiang, Liu, Rui.  2021.  Trust-Aware Emergency Response for A Resilient Human-Swarm Cooperative System. 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :15—20.

A human-swarm cooperative system, which mixes multiple robots and a human supervisor to form a mission team, has been widely used for emergent scenarios such as criminal tracking and victim assistance. These scenarios are related to human safety and require a robot team to quickly transit from the current undergoing task into the new emergent task. This sudden mission change brings difficulty in robot motion adjustment and increases the risk of performance degradation of the swarm. Trust in human-human collaboration reflects a general expectation of the collaboration; based on the trust humans mutually adjust their behaviors for better teamwork. Inspired by this, in this research, a trust-aware reflective control (Trust-R), was developed for a robot swarm to understand the collaborative mission and calibrate its motions accordingly for better emergency response. Typical emergent tasks “transit between area inspection tasks”, “response to emergent target - car accident” in social security with eight fault-related situations were designed to simulate robot deployments. A human user study with 50 volunteers was conducted to model trust and assess swarm performance. Trust-R's effectiveness in supporting a robot team for emergency response was validated by improved task performance and increased trust scores.

Doroftei, Daniela, De Vleeschauwer, Tom, Bue, Salvatore Lo, Dewyn, Michaël, Vanderstraeten, Frik, De Cubber, Geert.  2021.  Human-Agent Trust Evaluation in a Digital Twin Context. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :203—207.
Autonomous systems have the potential to accomplish missions more quickly and effectively, while reducing risks to human operators and costs. However, since the use of autonomous systems is still relatively new, there are still a lot of challenges associated with trusting these systems. Without operators in direct control of all actions, there are significant concerns associated with endangering human lives or damaging equipment. For this reason, NATO has issued a challenge seeking to identify ways to improve decision-maker and operator trust when deploying autonomous systems, and de-risk their adoption. This paper presents the proposal of the winning solution to this NATO challenge. It approaches trust as a multi-dimensional concept, by incorporating the four dimensions of human-agent trust establishment in a digital twin context.
Arafin, Md Tanvir, Kornegay, Kevin.  2021.  Attack Detection and Countermeasures for Autonomous Navigation. 2021 55th Annual Conference on Information Sciences and Systems (CISS). :1—6.
Advances in artificial intelligence, machine learning, and robotics have profoundly impacted the field of autonomous navigation and driving. However, sensor spoofing attacks can compromise critical components and the control mechanisms of mobile robots. Therefore, understanding vulnerabilities in autonomous driving and developing countermeasures remains imperative for the safety of unmanned vehicles. Hence, we demonstrate cross-validation techniques for detecting spoofing attacks on the sensor data in autonomous driving in this work. First, we discuss how visual and inertial odometry (VIO) algorithms can provide a root-of-trust during navigation. Then, we develop examples for sensor data spoofing attacks using the open-source driving dataset. Next, we design an attack detection technique using VIO algorithms that cross-validates the navigation parameters using the IMU and the visual data. Following, we consider hardware-dependent attack survival mechanisms that support an autonomous system during an attack. Finally, we also provide an example of spoofing survival technique using on-board hardware oscillators. Our work demonstrates the applicability of classical mobile robotics algorithms and hardware security primitives in defending autonomous vehicles from targeted cyber attacks.
Lee, Hyo-Cheol, Lee, Seok-Won.  2021.  Towards Provenance-based Trust-aware Model for Socio-Technically Connected Self-Adaptive System. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :761—767.
In a socio-technically connected environment, self-adaptive systems need to cooperate with others to collect information to provide context-dependent functionalities to users. A key component of ensuring safe and secure cooperation is finding trustworthy information and its providers. Trust is an emerging quality attribute that represents the level of belief in the cooperative environments and serves as a promising solution in this regard. In this research, we will focus on analyzing trust characteristics and defining trust-aware models through the trust-aware goal model and the provenance model. The trust-aware goal model is designed to represent the trust-related requirements and their relationships. The provenance model is analyzed as trust evidence to be used for the trust evaluation. The proposed approach contributes to build a comprehensive understanding of trust and design a trust-aware self-adaptive system. In order to show the feasibility of the proposed approach, we will conduct a case study with the crowd navigation system for an unmanned vehicle system.
Esterwood, Connor, Robert, Lionel P..  2021.  Do You Still Trust Me? Human-Robot Trust Repair Strategies 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :183—188.
Trust is vital to promoting human and robot collaboration, but like human teammates, robots make mistakes that undermine trust. As a result, a human’s perception of his or her robot teammate’s trustworthiness can dramatically decrease [1], [2], [3], [4]. Trustworthiness consists of three distinct dimensions: ability (i.e. competency), benevolence (i.e. concern for the trustor) and integrity (i.e. honesty) [5], [6]. Taken together, decreases in trustworthiness decreases trust in the robot [7]. To address this, we conducted a 2 (high vs. low anthropomorphism) x 4 (trust repair strategies) between-subjects experiment. Preliminary results of the first 164 participants (between 19 and 24 per cell) highlight which repair strategies are effective relative to ability, integrity and benevolence and the robot’s anthropomorphism. Overall, this paper contributes to the HRI trust repair literature.
Souto, Alexandre, Prates, Pedro Alexandre, Lourenço, André, Al Maamari, Mazoon S., Marques, Francisco, Taranta, David, DoÓ, Luís, Mendonça, Ricardo, Barata, José.  2021.  Fleet Management System for Autonomous Mobile Robots in Secure Shop-floor Environments. 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE). :1—6.
This paper presents a management system for a fleet of autonomous mobile robots performing logistics in security-heterogeneous factories. Loading and unloading goods and parts between workstations in these dynamic environments often demands from the mobile robots to share space and resources such as corridors, interlocked security doors and elevators among themselves. This model explores a dynamic task scheduling and assignment to the robots taking into account their location, tasks previously assigned and battery levels, all the while being aware of the physical constraints of the installation. The benefits of the proposed architecture were validated through a set of experiments in a mockup of INCM's shop-floor environment. During these tests 3 robots operated continuously for several hours, self-charging without any human intervention.
Mafioletti, Diego Rossi, de Mello, Ricardo Carminati, Ruffini, Marco, Frascolla, Valerio, Martinello, Magnos, Ribeiro, Moises R. N..  2021.  Programmable Data Planes as the Next Frontier for Networked Robotics Security: A ROS Use Case. 2021 17th International Conference on Network and Service Management (CNSM). :160—165.
In-Network Computing is a promising field that can be explored to leverage programmable network devices to offload computing towards the edge of the network. This has created great interest in supporting a wide range of network functionality in the data plane. Considering a networked robotics domain, this brings new opportunities to tackle the communication latency challenges. However, this approach opens a room for hardware-level exploits, with the possibility to add a malicious code to the network device in a hidden fashion, compromising the entire communication in the robotic facilities. In this work, we expose vulnerabilities that are exploitable in the most widely used flexible framework for writing robot software, Robot Operating System (ROS). We focus on ROS protocol crossing a programmable SmartNIC as a use case for In-Network Hijacking and In-Network Replay attacks, that can be easily implemented using the P4 language, exposing security vulnerabilities for hackers to take control of the robots or simply breaking the entire system.
Huang, Chao, Luo, Wenhao, Liu, Rui.  2021.  Meta Preference Learning for Fast User Adaptation in Human-Supervisory Multi-Robot Deployments. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :5851—5856.
As multi-robot systems (MRS) are widely used in various tasks such as natural disaster response and social security, people enthusiastically expect an MRS to be ubiquitous that a general user without heavy training can easily operate. However, humans have various preferences on balancing between task performance and safety, imposing different requirements onto MRS control. Failing to comply with preferences makes people feel difficult in operation and decreases human willingness of using an MRS. Therefore, to improve social acceptance as well as performance, there is an urgent need to adjust MRS behaviors according to human preferences before triggering human corrections, which increases cognitive load. In this paper, a novel Meta Preference Learning (MPL) method was developed to enable an MRS to fast adapt to user preferences. MPL based on meta learning mechanism can quickly assess human preferences from limited instructions; then, a neural network based preference model adjusts MRS behaviors for preference adaption. To validate method effectiveness, a task scenario "An MRS searches victims in an earthquake disaster site" was designed; 20 human users were involved to identify preferences as "aggressive", "medium", "reserved"; based on user guidance and domain knowledge, about 20,000 preferences were simulated to cover different operations related to "task quality", "task progress", "robot safety". The effectiveness of MPL in preference adaption was validated by the reduced duration and frequency of human interventions.