Visible to the public Biblio

Found 122 results

Filters: Keyword is anonymity  [Clear All Filters]
2018-04-02
Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov, S..  2017.  Accumulators with Applications to Anonymity-Preserving Revocation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :301–315.

Membership revocation is essential for cryptographic applications, from traditional PKIs to group signatures and anonymous credentials. Of the various solutions for the revocation problem that have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new, RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction of Braavos we use a modular approach: we show how to build an accumulator with better functionality and security from accumulators with fewer features and weaker security guarantees. We then describe an anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC can be added to any anonymous system, such as anonymous credentials or group signatures, in order to equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix, the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of practical revocation for anonymous credential systems.

Wu, D., Zhang, Y., Liu, Y..  2017.  Dummy Location Selection Scheme for K-Anonymity in Location Based Services. 2017 IEEE Trustcom/BigDataSE/ICESS. :441–448.

Location-Based Service (LBS) becomes increasingly important for our daily life. However, the localization information in the air is vulnerable to various attacks, which result in serious privacy concerns. To overcome this problem, we formulate a multi-objective optimization problem with considering both the query probability and the practical dummy location region. A low complexity dummy location selection scheme is proposed. We first find several candidate dummy locations with similar query probabilities. Among these selected candidates, a cloaking area based algorithm is then offered to find K - 1 dummy locations to achieve K-anonymity. The intersected area between two dummy locations is also derived to assist to determine the total cloaking area. Security analysis verifies the effectiveness of our scheme against the passive and active adversaries. Compared with other methods, simulation results show that the proposed dummy location scheme can improve the privacy level and enlarge the cloaking area simultaneously.

Al-Zobbi, M., Shahrestani, S., Ruan, C..  2017.  Implementing A Framework for Big Data Anonymity and Analytics Access Control. 2017 IEEE Trustcom/BigDataSE/ICESS. :873–880.

Analytics in big data is maturing and moving towards mass adoption. The emergence of analytics increases the need for innovative tools and methodologies to protect data against privacy violation. Many data anonymization methods were proposed to provide some degree of privacy protection by applying data suppression and other distortion techniques. However, currently available methods suffer from poor scalability, performance and lack of framework standardization. Current anonymization methods are unable to cope with the massive size of data processing. Some of these methods were especially proposed for MapReduce framework to operate in Big Data. However, they still operate in conventional data management approaches. Therefore, there were no remarkable gains in the performance. We introduce a framework that can operate in MapReduce environment to benefit from its advantages, as well as from those in Hadoop ecosystems. Our framework provides a granular user's access that can be tuned to different authorization levels. The proposed solution provides a fine-grained alteration based on the user's authorization level to access MapReduce domain for analytics. Using well-developed role-based access control approaches, this framework is capable of assigning roles to users and map them to relevant data attributes.

Gao, Y., Luo, T., Li, J., Wang, C..  2017.  Research on K Anonymity Algorithm Based on Association Analysis of Data Utility. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :426–432.

More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.

Elgzil, A., Chow, C. E., Aljaedi, A., Alamri, N..  2017.  Cyber Anonymity Based on Software-Defined Networking and Onion Routing (SOR). 2017 IEEE Conference on Dependable and Secure Computing. :358–365.

Cyber anonymity tools have attracted wide attention in resisting network traffic censorship and surveillance, and have played a crucial role for open communications over the Internet. The Onion Routing (Tor) is considered the prevailing technique for circumventing the traffic surveillance and providing cyber anonymity. Tor operates by tunneling a traffic through a series of relays, making such traffic to appear as if it originated from the last relay in the traffic path, rather than from the original user. However, Tor faced some obstructions in carrying out its goal effectively, such as insufficient performance and limited capacity. This paper presents a cyber anonymity technique based on software-defined networking; named SOR, which builds onion-routed tunnels across multiple anonymity service providers. SOR architecture enables any cloud tenants to participate in the anonymity service via software-defined networking. Our proposed architecture leverages the large capacity and robust connectivity of the commercial cloud networks to elevate the performance of the cyber anonymity service.

Wei, R., Shen, H., Tian, H..  2017.  An Improved (k,p,l)-Anonymity Method for Privacy Preserving Collaborative Filtering. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Collaborative Filtering (CF) is a successful technique that has been implemented in recommender systems and Privacy Preserving Collaborative Filtering (PPCF) aroused increasing concerns of the society. Current solutions mainly focus on cryptographic methods, obfuscation methods, perturbation methods and differential privacy methods. But these methods have some shortcomings, such as unnecessary computational cost, lower data quality and hard to calibrate the magnitude of noise. This paper proposes a (k, p, I)-anonymity method that improves the existing k-anonymity method in PPCF. The method works as follows: First, it applies Latent Factor Model (LFM) to reduce matrix sparsity. Then it improves Maximum Distance to Average Vector (MDAV) microaggregation algorithm based on importance partitioning to increase homogeneity among records in each group which can retain better data quality and (p, I)-diversity model where p is attacker's prior knowledge about users' ratings and I is the diversity among users in each group to improve the level of privacy preserving. Theoretical and experimental analyses show that our approach ensures a higher level of privacy preserving based on lower information loss.

Ranakoti, P., Yadav, S., Apurva, A., Tomer, S., Roy, N. R..  2017.  Deep Web Online Anonymity. 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN). :215–219.

Deep web, a hidden and encrypted network that crawls beneath the surface web today has become a social hub for various criminals who carry out their crime through the cyber space and all the crime is being conducted and hosted on the Deep Web. This research paper is an effort to bring forth various techniques and ways in which an internet user can be safe online and protect his privacy through anonymity. Understanding how user's data and private information is phished and what are the risks of sharing personal information on social media.

Kumar, V., Kumar, A., Singh, M..  2017.  Boosting Anonymity in Wireless Sensor Networks. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :344–348.

The base station (BS) is the main device in a wireless sensor network (WSN) and used to collect data from all the sensor nodes. The information of the whole network is stored in the BS and hence it is always targeted by the adversaries who want to interrupt the operation of the network. The nodes transmit their data to the BS using multi-hop technique and hence form an eminent traffic pattern that can be easily observed by a remote adversary. The presented research aims to increase the anonymity of the BS. The proposed scheme uses a mobile BS and ring nodes to complete the above mentioned objective. The simulation results show that the proposed scheme has superior outcomes as compared to the existing techniques.

Jia, J., Chen, L..  2017.  (L, m, d) \#x2014; Anonymity : A Resisting Similarity Attack Model for Multiple Sensitive Attributes. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :756–760.

Preserving privacy is extremely important in data publishing. The existing privacy-preserving models are mostly oriented to single sensitive attribute, can not be applied to multiple sensitive attributes situation. Moreover, they do not consider the semantic similarity between sensitive attribute values, and may be vulnerable to similarity attack. In this paper, we propose a (l, m, d)-anonymity model for multiple sensitive attributes similarity attack, where m is the dimension of the sensitive attributes. This model uses the semantic hierarchical tree to analyze and compute the semantic dissimilarity between sensitive attribute values, and each equivalence class must exist at least l sensitive attribute values that satisfy d-different on each dimension sensitive attribute. Meanwhile, in order to make the published data highly available, our model adopts the distance-based measurement method to divide the equivalence class. We carry out extensive experiments to certify the (1, m, d)-anonymity model can significantly reduce the probability of sensitive information leakage and protect individual privacy more effectively.

2017-10-04
Hayes, Jamie, Troncoso, Carmela, Danezis, George.  2016.  TASP: Towards Anonymity Sets That Persist. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :177–180.

Anonymous communication systems are vulnerable to long term passive "intersection attacks". Not all users of an anonymous communication system will be online at the same time, this leaks some information about who is talking to who. A global passive adversary observing all communications can learn the set of potential recipients of a message with more and more confidence over time. Nearly all deployed anonymous communication tools offer no protection against such attacks. In this work, we introduce TASP, a protocol used by an anonymous communication system that mitigates intersection attacks by intelligently grouping clients together into anonymity sets. We find that with a bandwidth overhead of just 8% we can dramatically extend the time necessary to perform a successful intersection attack.

2017-08-22
Skowyra, Richard, Bauer, Kevin, Dedhia, Veer, Okhravi, Hamed.  2016.  Have No PHEAR: Networks Without Identifiers. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :3–14.

Network protocols such as Ethernet and TCP/IP were not designed to ensure the security and privacy of users. To protect users' privacy, anonymity networks such as Tor have been proposed to hide both identities and communication contents for Internet traffic. However, such solutions cannot protect enterprise network traffic that does not transit the Internet. In this paper, we present the design, implementation, and evaluation of a moving target technique called Packet Header Randomization (PHEAR), a privacy-enhancing system for enterprise networks that leverages emerging Software-Defined Networking hardware and protocols to eliminate identifiers found at the MAC, Network, and higher layers of the network stack. PHEAR also encrypts all packet data beyond the Network layer. We evaluate the security of PHEAR against a variety of known and novel attacks and conduct whole-network experiments that show the prototype deployment provides sufficient performance for common applications such as web browsing and file sharing.

Lazarenko, Aleksandr, Avdoshin, Sergey.  2016.  Anonymity of Tor: Myth and Reality. Proceedings of the 12th Central and Eastern European Software Engineering Conference in Russia. :10:1–10:5.

Privacy enhancing technologies (PETs) are ubiquitous nowadays. They are beneficial for a wide range of users. However, PETs are not always used for legal activity. The present paper is focused on Tor users deanonimization1 using out-of-the box technologies and a basic machine learning algorithm. The aim of the work is to show that it is possible to deanonimize a small fraction of users without having a lot of resources and state-of-the-art machine learning techniques. The deanonimization is a very important task from the point of view of national security. To address this issue, we are using a website fingerprinting attack.

Ma, Xiao, Hancock, Jeff, Naaman, Mor.  2016.  Anonymity, Intimacy and Self-Disclosure in Social Media. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. :3857–3869.

Self-disclosure is rewarding and provides significant benefits for individuals, but it also involves risks, especially in social media settings. We conducted an online experiment to study the relationship between content intimacy and willingness to self-disclose in social media, and how identification (real name vs. anonymous) and audience type (social ties vs. people nearby) moderate that relationship. Content intimacy is known to regulate self-disclosure in face-to-face communication: people self-disclose less as content intimacy increases. We show that such regulation persists in online social media settings. Further, although anonymity and an audience of social ties are both known to increase self-disclosure, it is unclear whether they (1) increase self-disclosure baseline for content of all intimacy levels, or (2) weaken intimacy's regulation effect, making people more willing to disclose intimate content. We show that intimacy always regulates self-disclosure, regardless of settings. We also show that anonymity mainly increases self-disclosure baseline and (sometimes) weakens the regulation. On the other hand, an audience of social ties increases the baseline but strengthens the regulation. Finally, we demonstrate that anonymity has a more salient effect on content of negative valence.The results are critical to understanding the dynamics and opportunities of self-disclosure in social media services that vary levels of identification and types of audience.

Yang, Yanjiang, Lu, Haibing, Liu, Joseph K., Weng, Jian, Zhang, Youcheng, Zhou, Jianying.  2016.  Credential Wrapping: From Anonymous Password Authentication to Anonymous Biometric Authentication. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :141–151.

The anonymous password authentication scheme proposed in ACSAC'10 under an unorthodox approach of password wrapped credentials advanced anonymous password authentication to be a practically ready primitive, and it is being standardized. In this paper, we improve on that scheme by proposing a new method of "public key suppression" for achieving server-designated credential verifiability, a core technicality in materializing the concept of password wrapped credential. Besides better performance, our new method simplifies the configuration of the authentication server, rendering the resulting scheme even more practical. Further, we extend the idea of password wrapped credential to biometric wrapped credential\vphantom\\, to achieve anonymous biometric authentication. As expected, biometric wrapped credentials help break the linear server-side computation barrier intrinsic in the standard setting of biometric authentication. Experimental results validate the feasibility of realizing efficient anonymous biometric authentication.

Jansen, Rob, Johnson, Aaron.  2016.  Safely Measuring Tor. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1553–1567.

Tor is a popular network for anonymous communication. The usage and operation of Tor is not well-understood, however, because its privacy goals make common measurement approaches ineffective or risky. We present PrivCount, a system for measuring the Tor network designed with user privacy as a primary goal. PrivCount securely aggregates measurements across Tor relays and over time to produce differentially private outputs. PrivCount improves on prior approaches by enabling flexible exploration of many diverse kinds of Tor measurements while maintaining accuracy and privacy for each. We use PrivCount to perform a measurement study of Tor of sufficient breadth and depth to inform accurate models of Tor users and traffic. Our results indicate that Tor has 710,000 users connected but only 550,000 active at a given time, that Web traffic now constitutes 91% of data bytes on Tor, and that the strictness of relays' connection policies significantly affects the type of application data they forward.

Jakobsen, Sune K., Orlandi, Claudio.  2016.  How To Bootstrap Anonymous Communication. Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. :333–344.

We ask whether it is possible to anonymously communicate a large amount of data using only public (non-anonymous) communication together with a small anonymous channel. We think this is a central question in the theory of anonymous communication and to the best of our knowledge this is the first formal study in this direction. Towards this goal, we introduce the novel concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short decoding key dk which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: Introducing and formally defining anonymous steganography, A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), A lower bound on the number of bits which are needed to bootstrap anonymous communication.

2017-07-24
Jakobsen, Sune K., Orlandi, Claudio.  2016.  How To Bootstrap Anonymous Communication. Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. :333–344.

We ask whether it is possible to anonymously communicate a large amount of data using only public (non-anonymous) communication together with a small anonymous channel. We think this is a central question in the theory of anonymous communication and to the best of our knowledge this is the first formal study in this direction. Towards this goal, we introduce the novel concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short decoding key dk which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: Introducing and formally defining anonymous steganography, A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), A lower bound on the number of bits which are needed to bootstrap anonymous communication.

Zhenfeng Zhang, Kang Yang, Xuexian Hu, Yuchen Wang.  2016.  Practical Anonymous Password Authentication and TLS with Anonymous Client Authentication.

Anonymous authentication allows one to authenticate herself without revealing her identity, and becomes an important technique for constructing privacy-preserving Internet connections. Anonymous password authentication is highly desirable as it enables a client to authenticate herself by a human-memorable password while preserving her privacy. In this paper, we introduce a novel approach for designing anonymous password-authenticated key exchange (APAKE) protocols using algebraic message authentication codes (MACs), where an algebraic MAC wrapped by a password is used by a client for anonymous authentication, and a server issues algebraic MACs to clients and acts as the verifier of login protocols. Our APAKE construction is secure provided that the algebraic MAC is strongly existentially unforgeable under random message and chosen verification queries attack (suf-rmva), weak pseudorandom and tag-randomization simulatable, and has simulation-sound extractable non-interactive zero-knowledge proofs (SE-NIZKs). To design practical APAKE protocols, we instantiate an algebraic MAC based on the q-SDH assumption which satisfies all the required properties, and construct credential presentation algorithms for the MAC which have optimal efficiency for a randomize-then-prove paradigm. Based on the algebraic MAC, we instantiate a highly practical APAKE protocol and denote it by APAKE, which is much more efficient than the mechanisms specified by ISO/IEC 20009-4. An efficient revocation mechanism for APAKE is also proposed.

We integrate APAKE into TLS to present an anonymous client authentication mode where clients holding passwords can authenticate themselves to a server anonymously. Our implementation with 128-bit security shows that the average connection time of APAKE-based ciphersuite is 2.8 ms. With APAKE integrated into the OpenSSL library and using an Apache web server on a 2-core desktop computer, we could serve 953 ECDHE-ECDSA-AES128-GCM-SHA256 HTTPS connections per second for a 10 KB payload. Compared to ECDSA-signed elliptic curve Diffie-Hellman ciphersuite with mutual authentication, this means a 0.27 KB increased handshake size and a 13% reduction in throughput.

2017-06-27
Jafarian, Jafar Haadi, Niakanlahiji, Amirreza, Al-Shaer, Ehab, Duan, Qi.  2016.  Multi-dimensional Host Identity Anonymization for Defeating Skilled Attackers. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :47–58.

While existing proactive-based paradigms such as address mutation are effective in slowing down reconnaissance by naive attackers, they are ineffective against skilled human attackers. In this paper, we analytically show that the goal of defeating reconnaissance by skilled human attackers is only achievable by an integration of five defensive dimensions: (1) mutating host addresses, (2) mutating host fingerprints, (3) anonymizing host fingerprints, (4) deploying high-fidelity honeypots with context-aware fingerprints, and (5) deploying context-aware content on those honeypots. Using a novel class of honeypots, referred to as proxy honeypots (high-interaction honeypots with customizable fingerprints), we propose a proactive defense model, called (HIDE), that constantly mutates addresses and fingerprints of network hosts and proxy honeypots in a manner that maximally anonymizes identity of network hosts. The objective is to make a host untraceable over time by not letting even skilled attackers reuse discovered attributes of a host in previous scanning, including its addresses and fingerprint, to identify that host again. The mutations are generated through formal definition and modeling the problem. Using a red teaming evaluation with a group of white-hat hackers, we evaluated our five-dimensional defense model and compared its effectiveness with alternative and competing scenarios. These experiments as well as our analytical evaluation show that by anonymizing all identifying attributes of a host/honeypot over time, HIDE is able to significantly complicate reconnaissance, even for highly skilled human attackers.

Maheswaran, John, Jackowitz, Daniel, Zhai, Ennan, Wolinsky, David Isaac, Ford, Bryan.  2016.  Building Privacy-Preserving Cryptographic Credentials from Federated Online Identities. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :3–13.

Federated identity providers, e.g., Facebook and PayPal, offer a convenient means for authenticating users to third-party applications. Unfortunately such cross-site authentications carry privacy and tracking risks. For example, federated identity providers can learn what applications users are accessing; meanwhile, the applications can know the users' identities in reality. This paper presents Crypto-Book, an anonymizing layer enabling federated identity authentications while preventing these risks. Crypto-Book uses a set of independently managed servers that employ a (t,n)-threshold cryptosystem to collectively assign credentials to each federated identity (in the form of either a public/private keypair or blinded signed messages). With the credentials in hand, clients can then leverage anonymous authentication techniques such as linkable ring signatures or partially blind signatures to log into third-party applications in an anonymous yet accountable way. We have implemented a prototype of Crypto-Book and demonstrated its use with three applications: a Wiki system, an anonymous group communication system, and a whistleblower submission system. Crypto-Book is practical and has low overhead: in a deployment within our research group, Crypto-Book group authentication took 1.607s end-to-end, an overhead of 1.2s compared to traditional non-privacy-preserving federated authentication.

2017-05-16
Yoneyama, Kazuki, Ohta, Kazuo.  2007.  Ring Signatures: Universally Composable Definitions and Constructions. Proceedings of the 2Nd ACM Symposium on Information, Computer and Communications Security. :374–376.

Though anonymity of ring signature schemes has been studied in many literatures for a long time, these papers showed different definitions and there is no consensus. Recently, Bender et al. proposed two new anonymity definitions of ring signature which is stronger than the traditional definition, that are called anonymity against attribution attacks/full key exposure. Also, ring signature schemes have two levels of unforgeability definitions, i.e., existential un-forgeability (eUF) and strong existential unforgeability (sUF). In this paper, we will redefine anonymity and unforgeability definitions from the standpoint of universally composable (UC) security framework. First, we will formulate new ideal functionalities of ring signature schemes for each security levels separately. Next, we will show relations between cryptographic security definitions and our UC definitions. Finally, we will give another proof of the Bender et al.'s ring signature scheme following the UC secure definition by constructing a simulator to an adversary of sUF, which can be adaptable to the case of sUF under the assumption of a standard single sUF signature scheme.

2017-04-24
Sivakorn, Suphannee, Keromytis, Angelos D., Polakis, Jason.  2016.  That's the Way the Cookie Crumbles: Evaluating HTTPS Enforcing Mechanisms. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :71–81.

Recent incidents have once again brought the topic of encryption to public discourse, while researchers continue to demonstrate attacks that highlight the difficulty of implementing encryption even without the presence of "backdoors". However, apart from the threat of implementation flaws in encryption libraries, another significant threat arises when web services fail to enforce ubiquitous encryption. A recent study explored this phenomenon in popular services, and demonstrated how users are exposed to cookie hijacking attacks with severe privacy implications. Many security mechanisms purport to eliminate this problem, ranging from server-controlled options such as HSTS to user-controlled options such as HTTPS Everywhere and other browser extensions. In this paper, we create a taxonomy of available mechanisms and evaluate how they perform in practice. We design an automated testing framework for these mechanisms, and evaluate them using a dataset of 30 days of HTTP requests collected from the public wireless network of our university's campus. We find that all mechanisms suffer from implementation flaws or deployment issues and argue that, as long as servers continue to not support ubiquitous encryption across their entire domain (including all subdomains), no mechanism can effectively protect users from cookie hijacking and information leakage.

Li, Xiaoyu, Yoshie, Osamu, Huang, Daoping.  2016.  A Passive Means Based Privacy Protection Method for the Perceptual Layer of IoTs. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :335–339.

Privacy protection in Internet of Things (IoTs) has long been the topic of extensive research in the last decade. The perceptual layer of IoTs suffers the most significant privacy disclosing because of the limitation of hardware resources. Data encryption and anonymization are the most common methods to protect private information for the perceptual layer of IoTs. However, these efforts are ineffective to avoid privacy disclosure if the communication environment exists unknown wireless nodes which could be malicious devices. Therefore, in this paper we derive an innovative and passive method called Horizontal Hierarchy Slicing (HHS) method to detect the existence of unknown wireless devices which could result negative means to the privacy. PAM algorithm is used to cluster the HHS curves and analyze whether unknown wireless devices exist in the communicating environment. Link Quality Indicator data are utilized as the network parameters in this paper. The simulation results show their effectiveness in privacy protection.

Li, Yan, Zhu, Ting.  2016.  Gait-Based Wi-Fi Signatures for Privacy-Preserving. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :571–582.

With the advent of the Internet of Things (IoT) and big data, high fidelity localization and tracking systems that employ cameras, RFIDs, and attached sensors intrude on personal privacy. However, the benefit of localization information sharing enables trend forecasting and automation. To address this challenge, we introduce Wobly, an attribute based signature (ABS) that measures gait. Wobly passively receives Wi-Fi beacons and produces human signatures based on the Doppler Effect and multipath signals without attached devices and out of direct line-of-sight. Because signatures are specific to antenna placement and room configuration and do not require sensor attachments, the identities of the individuals can remain anonymous. However, the gait based signatures are still unique, and thus Wobly is able to track individuals in a building or home. Wobly uses the physical layer channel and the unique human gait as a means of encoding a person's identity. We implemented Wobly on a National Instruments Radio Frequency (RF) test bed. Using a simple naive Bayes classifier, the correct identification rate was 87% with line-of-sight (LoS) and 77% with non-line-of-sight (NLoS).

Shokri, Reza, Theodorakopoulos, George, Troncoso, Carmela.  2016.  Privacy Games Along Location Traces: A Game-Theoretic Framework for Optimizing Location Privacy. ACM Trans. Priv. Secur.. 19:11:1–11:31.

The mainstream approach to protecting the privacy of mobile users in location-based services (LBSs) is to alter (e.g., perturb, hide, and so on) the users’ actual locations in order to reduce exposed sensitive information. In order to be effective, a location-privacy preserving mechanism must consider both the privacy and utility requirements of each user, as well as the user’s overall exposed locations (which contribute to the adversary’s background knowledge). In this article, we propose a methodology that enables the design of optimal user-centric location obfuscation mechanisms respecting each individual user’s service quality requirements, while maximizing the expected error that the optimal adversary incurs in reconstructing the user’s actual trace. A key advantage of a user-centric mechanism is that it does not depend on third-party proxies or anonymizers; thus, it can be directly integrated in the mobile devices that users employ to access LBSs. Our methodology is based on the mutual optimization of user/adversary objectives (maximizing location privacy versus minimizing localization error) formalized as a Stackelberg Bayesian game. This formalization makes our solution robust against any location inference attack, that is, the adversary cannot decrease the user’s privacy by designing a better inference algorithm as long as the obfuscation mechanism is designed according to our privacy games. We develop two linear programs that solve the location privacy game and output the optimal obfuscation strategy and its corresponding optimal inference attack. These linear programs are used to design location privacy–preserving mechanisms that consider the correlation between past, current, and future locations of the user, thus can be tuned to protect different privacy objectives along the user’s location trace. We illustrate the efficacy of the optimal location privacy–preserving mechanisms obtained with our approach against real location traces, showing their performance in protecting users’ different location privacy objectives.