Visible to the public Biblio

Filters: Keyword is vulnerability detection  [Clear All Filters]
2023-07-13
Alqarni, Mansour, Azim, Akramul.  2022.  Mining Large Data to Create a Balanced Vulnerability Detection Dataset for Embedded Linux System. 2022 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT). :83–91.
The security of embedded systems is particularly crucial given the prevalence of embedded devices in daily life, business, and national defense. Firmware for embedded systems poses a serious threat to the safety of society, business, and the nation because of its robust concealment, difficulty in detection, and extended maintenance cycle. This technology is now an essential part of the contemporary experience, be it in the smart office, smart restaurant, smart home, or even the smart traffic system. Despite the fact that these systems are often fairly effective, the rapid expansion of embedded systems in smart cities have led to inconsistencies and misalignments between secured and unsecured systems, necessitating the development of secure, hacker-proof embedded systems. To solve this issue, we created a sizable, original, and objective dataset that is based on the latest Linux vulnerabilities for identifying the embedded system vulnerabilities and we modified a cutting-edge machine learning model for the Linux Kernel. The paper provides an updated EVDD and analysis of an extensive dataset for embedded system based vulnerability detection and also an updated state of the art deep learning model for embedded system vulnerability detection. We kept our dataset available for all researchers for future experiments and implementation.
2023-04-28
Zhang, Xin, Sun, Hongyu, He, Zhipeng, Gu, MianXue, Feng, Jingyu, Zhang, Yuqing.  2022.  VDBWGDL: Vulnerability Detection Based On Weight Graph And Deep Learning. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :186–190.
Vulnerability detection has always been an essential part of maintaining information security, and the existing work can significantly improve the performance of vulnerability detection. However, due to the differences in representation forms and deep learning models, various methods still have some limitations. In order to overcome this defect, We propose a vulnerability detection method VDBWGDL, based on weight graphs and deep learning. Firstly, it accurately locates vulnerability-sensitive keywords and generates variant codes that satisfy vulnerability trigger logic and programmer programming style through code variant methods. Then, the control flow graph is sliced for vulnerable code keywords and program critical statements. The code block is converted into a vector containing rich semantic information and input into the weight map through the deep learning model. According to specific rules, different weights are set for each node. Finally, the similarity is obtained through the similarity comparison algorithm, and the suspected vulnerability is output according to different thresholds. VDBWGDL improves the accuracy and F1 value by 3.98% and 4.85% compared with four state-of-the-art models. The experimental results prove the effectiveness of VDBWGDL.
ISSN: 2325-6664
2023-02-13
Wu, Yueming, Zou, Deqing, Dou, Shihan, Yang, Wei, Xu, Duo, Jin, Hai.  2022.  VulCNN: An Image-inspired Scalable Vulnerability Detection System. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :2365—2376.
Since deep learning (DL) can automatically learn features from source code, it has been widely used to detect source code vulnerability. To achieve scalable vulnerability scanning, some prior studies intend to process the source code directly by treating them as text. To achieve accurate vulnerability detection, other approaches consider distilling the program semantics into graph representations and using them to detect vulnerability. In practice, text-based techniques are scalable but not accurate due to the lack of program semantics. Graph-based methods are accurate but not scalable since graph analysis is typically time-consuming. In this paper, we aim to achieve both scalability and accuracy on scanning large-scale source code vulnerabilities. Inspired by existing DL-based image classification which has the ability to analyze millions of images accurately, we prefer to use these techniques to accomplish our purpose. Specifically, we propose a novel idea that can efficiently convert the source code of a function into an image while preserving the program details. We implement Vul-CNN and evaluate it on a dataset of 13,687 vulnerable functions and 26,970 non-vulnerable functions. Experimental results report that VulCNN can achieve better accuracy than eight state-of-the-art vul-nerability detectors (i.e., Checkmarx, FlawFinder, RATS, TokenCNN, VulDeePecker, SySeVR, VulDeeLocator, and Devign). As for scalability, VulCNN is about four times faster than VulDeePecker and SySeVR, about 15 times faster than VulDeeLocator, and about six times faster than Devign. Furthermore, we conduct a case study on more than 25 million lines of code and the result indicates that VulCNN can detect large-scale vulnerability. Through the scanning reports, we finally discover 73 vulnerabilities that are not reported in NVD.
2022-08-12
Zhang, Yanmiao, Ji, Xiaoyu, Cheng, Yushi, Xu, Wenyuan.  2019.  Vulnerability Detection for Smart Grid Devices via Static Analysis. 2019 Chinese Control Conference (CCC). :8915–8919.
As a modern power transmission network, smart grid connects abundant terminal devices and plays an important role in our daily life. However, along with its growth are the security threats. Different from the separated environment previously, an adversary nowadays can destroy the power system by attacking its terminal devices. As a result, it's critical to ensure the security and safety of terminal devices. To achieve it, detecting the pre-existing vulnerabilities in the terminal program and enhancing its security, are of great importance and necessity. In this paper, we introduce Cker, a novel vulnerability detection tool for smart grid devices, which generates an program model based on device sources and sets rules to perform model checking. We utilize the static analysis to extract necessary information and build corresponding program models. By further checking the model with pre-defined vulnerability patterns, we achieve security detection and error reporting. The evaluation results demonstrate that our method can effectively detect vulnerabilities in smart devices with an acceptable accuracy and false positive rate. In addition, as Cker is realized by pure python, it can be easily scaled to other platforms.
2022-06-10
Nguyen, Tien N., Choo, Raymond.  2021.  Human-in-the-Loop XAI-enabled Vulnerability Detection, Investigation, and Mitigation. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1210–1212.
The need for cyber resilience is increasingly important in our technology-dependent society, where computing systems, devices and data will continue to be the target of cyber attackers. Hence, we propose a conceptual framework called ‘Human-in-the-Loop Explainable-AI-Enabled Vulnerability Detection, Investigation, and Mitigation’ (HXAI-VDIM). Specifically, instead of resolving complex scenario of security vulnerabilities as an output of an AI/ML model, we integrate the security analyst or forensic investigator into the man-machine loop and leverage explainable AI (XAI) to combine both AI and Intelligence Assistant (IA) to amplify human intelligence in both proactive and reactive processes. Our goal is that HXAI-VDIM integrates human and machine in an interactive and iterative loop with security visualization that utilizes human intelligence to guide the XAI-enabled system and generate refined solutions.
2022-05-19
Chen, Xiarun, Li, Qien, Yang, Zhou, Liu, Yongzhi, Shi, Shaosen, Xie, Chenglin, Wen, Weiping.  2021.  VulChecker: Achieving More Effective Taint Analysis by Identifying Sanitizers Automatically. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :774–782.
The automatic detection of vulnerabilities in Web applications using taint analysis is a hot topic. However, existing taint analysis methods for sanitizers identification are too simple to find available taint transmission chains effectively. These methods generally use pre-constructed dictionaries or simple keywords to identify, which usually suffer from large false positives and false negatives. No doubt, it will have a greater impact on the final result of the taint analysis. To solve that, we summarise and classify the commonly used sanitizers in Web applications and propose an identification method based on semantic analysis. Our method can accurately and completely identify the sanitizers in the target Web applications through static analysis. Specifically, we analyse the natural semantics and program semantics of existing sanitizers, use semantic analysis to find more in Web applications. Besides, we implemented the method prototype in PHP and achieved a vulnerability detection tool called VulChecker. Then, we experimented with some popular open-source CMS frameworks. The results show that Vulchecker can accurately identify more sanitizers. In terms of vulnerability detection, VulChecker also has a lower false positive rate and a higher detection rate than existing methods. Finally, we used VulChecker to analyse the latest PHP applications. We identified several new suspicious taint data propagation chains. Before the paper was completed, we have identified four unreported vulnerabilities. In general, these results show that our approach is highly effective in improving vulnerability detection based on taint analysis.
2022-05-10
Ahakonye, Love Allen Chijioke, Amaizu, Gabriel Chukwunonso, Nwakanma, Cosmas Ifeanyi, Lee, Jae Min, Kim, Dong-Seong.  2021.  Enhanced Vulnerability Detection in SCADA Systems using Hyper-Parameter-Tuned Ensemble Learning. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :458–461.
The growth of inter-dependency intricacies of Supervisory Control and Data Acquisition (SCADA) systems in industrial operations generates a likelihood of increased vulnerability to malicious threats and machine learning approaches have been extensively utilized in the research for vulnerability detection. Nonetheless, to improve security, an enhanced vulnerability detection using hyper-parameter-tune machine learning is proposed for early detection, classification and mitigation of SCADA communication and transmission networks by classifying benign, or malicious DNS attacks. The proposed scheme, an ensemble optimizer (GentleBoost) upon hyper-parameter tuning, gave a comparative achievement. From the simulation results, the proposed scheme had an outstanding performance within the shortest possible time with an accuracy of 99.49%, 99.23% for precision, and a recall rate of 99.75%. Also, the model was compared to other contemporary algorithms and outperformed all the other algorithms proving to be an approach to keep abreast of the SCADA network vulnerabilities and attacks.
Wang, Ben, Chu, Hanting, Zhang, Pengcheng, Dong, Hai.  2021.  Smart Contract Vulnerability Detection Using Code Representation Fusion. 2021 28th Asia-Pacific Software Engineering Conference (APSEC). :564–565.
At present, most smart contract vulnerability detection use manually-defined patterns, which is time-consuming and far from satisfactory. To address this issue, researchers attempt to deploy deep learning techniques for automatic vulnerability detection in smart contracts. Nevertheless, current work mostly relies on a single code representation such as AST (Abstract Syntax Tree) or code tokens to learn vulnerability characteristics, which might lead to incompleteness of learned semantics information. In addition, the number of available vulnerability datasets is also insufficient. To address these limitations, first, we construct a dataset covering most typical types of smart contract vulnerabilities, which can accurately indicate the specific row number where a vulnerability may exist. Second, for each single code representation, we propose a novel way called AFS (AST Fuse program Slicing) to fuse code characteristic information. AFS can fuse the structured information of AST with program slicing information and detect vulnerabilities by learning new vulnerability characteristic information.
Lin, Wei, Cai, Saihua.  2021.  An Empirical Study on Vulnerability Detection for Source Code Software based on Deep Learning. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1159–1160.
In recent years, the complexity of software vulnera-bilities has continued to increase. Manual vulnerability detection methods alone no longer meet the demand. With the rapid development of the deep learning, many neural network models have been widely applied to source code vulnerability detection. The variant of recurrent neural network (RNN), bidirectional Long Short-Term Memory (BiLSTM), has been a popular choice in vulnerability detection. However, is BiLSTM the most suitable choice? To answer this question, we conducted a series of experiments to investigate the effectiveness of different neural network models for source code vulnerability detection. The results shows that the variants of RNN, gated recurrent unit (GRU) and bidirectional GRU, are more capable of detecting source code fragments with mixed vulnerability types. And the concatenated convolutional neural network is more capable of detecting source code fragments of single vulnerability types.
Zheng, Wei, Abdallah Semasaba, Abubakar Omari, Wu, Xiaoxue, Agyemang, Samuel Akwasi, Liu, Tao, Ge, Yuan.  2021.  Representation vs. Model: What Matters Most for Source Code Vulnerability Detection. 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :647–653.
Vulnerabilities in the source code of software are critical issues in the realm of software engineering. Coping with vulnerabilities in software source code is becoming more challenging due to several aspects of complexity and volume. Deep learning has gained popularity throughout the years as a means of addressing such issues. In this paper, we propose an evaluation of vulnerability detection performance on source code representations and evaluate how Machine Learning (ML) strategies can improve them. The structure of our experiment consists of 3 Deep Neural Networks (DNNs) in conjunction with five different source code representations; Abstract Syntax Trees (ASTs), Code Gadgets (CGs), Semantics-based Vulnerability Candidates (SeVCs), Lexed Code Representations (LCRs), and Composite Code Representations (CCRs). Experimental results show that employing different ML strategies in conjunction with the base model structure influences the performance results to a varying degree. However, ML-based techniques suffer from poor performance on class imbalance handling when used in conjunction with source code representations for software vulnerability detection.
Pereira, José D'Abruzzo, Antunes, João Henggeler, Vieira, Marco.  2021.  On Building a Vulnerability Dataset with Static Information from the Source Code. 2021 10th Latin-American Symposium on Dependable Computing (LADC). :1–2.

Software vulnerabilities are weaknesses in software systems that can have serious consequences when exploited. Examples of side effects include unauthorized authentication, data breaches, and financial losses. Due to the nature of the software industry, companies are increasingly pressured to deploy software as quickly as possible, leading to a large number of undetected software vulnerabilities. Static code analysis, with the support of Static Analysis Tools (SATs), can generate security alerts that highlight potential vulnerabilities in an application's source code. Software Metrics (SMs) have also been used to predict software vulnerabilities, usually with the support of Machine Learning (ML) classification algorithms. Several datasets are available to support the development of improved software vulnerability detection techniques. However, they suffer from the same issues: they are either outdated or use a single type of information. In this paper, we present a methodology for collecting software vulnerabilities from known vulnerability databases and enhancing them with static information (namely SAT alerts and SMs). The proposed methodology aims to define a mechanism capable of more easily updating the collected data.

Li, Ziyang, Washizaki, Hironori, Fukazawa, Yoshiaki.  2021.  Feature Extraction Method for Cross-Architecture Binary Vulnerability Detection. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :834–836.
Vulnerability detection identifies defects in various commercial software. Because most vulnerability detection methods are based on the source code, they are not useful if the source code is unavailable. In this paper, we propose a binary vulnerability detection method and use our tool named BVD that extracts binary features with the help of an intermediate language and then detects the vulnerabilities using an embedding model. Sufficiently robust features allow the binaries compiled in cross-architecture to be compared. Consequently, a similarity evaluation provides more accurate results.
Li, Hongrui, Zhou, Lili, Xing, Mingming, Taha, Hafsah binti.  2021.  Vulnerability Detection Algorithm of Lightweight Linux Internet of Things Application with Symbolic Execution Method. 2021 International Symposium on Computer Technology and Information Science (ISCTIS). :24–27.
The security of Internet of Things (IoT) devices has become a matter of great concern in recent years. The existence of security holes in the executable programs in the IoT devices has resulted in difficult to estimate security risks. For a long time, vulnerability detection is mainly completed by manual debugging and analysis, and the detection efficiency is low and the accuracy is difficult to guarantee. In this paper, the mainstream automated vulnerability analysis methods in recent years are studied, and a vulnerability detection algorithm based on symbol execution is presented. The detection algorithm is suitable for lightweight applications in small and medium-sized IoT devices. It realizes three functions: buffer overflow vulnerability detection, encryption reliability detection and protection state detection. The robustness of the detection algorithm was tested in the experiment, and the detection of overflow vulnerability program was completed within 2.75 seconds, and the detection of encryption reliability was completed within 1.79 seconds. Repeating the test with multiple sets of data showed a small difference of less than 6.4 milliseconds. The results show that the symbol execution detection algorithm presented in this paper has high detection efficiency and more robust accuracy and robustness.
Bezzateev, S. V., Fomicheva, S. G., Zhemelev, G. A..  2021.  Agent-based ZeroLogon Vulnerability Detection. 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
Intrusion detection systems installed on the information security devices that control the internal and external perimeter of the demilitarized zones are not able to detect the vulnerability of ZeroLogon after the successful penetration of the intruder into the zone. Component solution for ZeroLogon control is offered. The paper presents the research results of the capabilities for built-in Active Directory audit mechanisms and open source intrusion detection/prevention systems, which allow identification of the critical vulnerability CVE-2020-1472. These features can be used to improve the quality of cyber-physical systems management, to perform audits, as well as to check corporate domains for ZeroLogon vulnerabilities.
Ecik, Harun.  2021.  Comparison of Active Vulnerability Scanning vs. Passive Vulnerability Detection. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :87–92.
Vulnerability analysis is an integral part of an overall security program. Through identifying known security flaws and weaknesses, vulnerability identification tools help security practitioners to remediate the existing vulnerabilities on the networks. Thus, it is crucial that the results of such tools are complete, accurate, timely and they produce vulnerability results with minimum or no side-effects on the networks. To achieve these goals, Active Vulnerability Scanning (AVS) or Passive Vulnerability Detection (PVD) approaches can be used by network-based vulnerability scanners. In this work, we evaluate these two approaches with respect to efficiency and effectiveness. For the effectiveness analysis, we compare these two approaches empirically on a test environment and evaluate their outcomes. According to total amount of accuracy and precision, the PVD results are higher than AVS. As a result of our analysis, we conclude that PVD returns more complete and accurate results with considerably shorter scanning periods and with no side-effects on networks, compared to the AVS.
2022-04-19
Zukran, Busra, Siraj, Maheyzah Md.  2021.  Performance Comparison on SQL Injection and XSS Detection using Open Source Vulnerability Scanners. 2021 International Conference on Data Science and Its Applications (ICoDSA). :61–65.

Web technologies are typically built with time constraints and security vulnerabilities. Automatic software vulnerability scanners are common tools for detecting such vulnerabilities among software developers. It helps to illustrate the program for the attacker by creating a great deal of engagement within the program. SQL Injection and Cross-Site Scripting (XSS) are two of the most commonly spread and dangerous vulnerabilities in web apps that cause to the user. It is very important to trust the findings of the site vulnerability scanning software. Without a clear idea of the accuracy and the coverage of the open-source tools, it is difficult to analyze the result from the automatic vulnerability scanner that provides. The important to do a comparison on the key figure on the automated vulnerability scanners because there are many kinds of a scanner on the market and this comparison can be useful to decide which scanner has better performance in term of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities. In this paper, a method by Jose Fonseca et al, is used to compare open-source automated vulnerability scanners based on detection coverage and a method by Yuki Makino and Vitaly Klyuev for precision rate. The criteria vulnerabilities will be injected into the web applications which then be scanned by the scanners. The results then are compared by analyzing the precision rate and detection coverage of vulnerability detection. Two leading open source automated vulnerability scanners will be evaluated. In this paper, the scanner that being utilizes is OW ASP ZAP and Skipfish for comparison. The results show that from precision rate and detection rate scope, OW ASP ZAP has better performance than Skipfish by two times for precision rate and have almost the same result for detection coverage where OW ASP ZAP has a higher number in high vulnerabilities.

2022-04-01
Pereira, José D'Abruzzo, Campos, João R., Vieira, Marco.  2021.  Machine Learning to Combine Static Analysis Alerts with Software Metrics to Detect Security Vulnerabilities: An Empirical Study. 2021 17th European Dependable Computing Conference (EDCC). :1—8.

Software developers can use diverse techniques and tools to reduce the number of vulnerabilities, but the effectiveness of existing solutions in real projects is questionable. For example, Static Analysis Tools (SATs) report potential vulnerabilities by analyzing code patterns, and Software Metrics (SMs) can be used to predict vulnerabilities based on high-level characteristics of the code. In theory, both approaches can be applied from the early stages of the development process, but it is well known that they fail to detect critical vulnerabilities and raise a large number of false alarms. This paper studies the hypothesis of using Machine Learning (ML) to combine alerts from SATs with SMs to predict vulnerabilities in a large software project (under development for many years). In practice, we use four ML algorithms, alerts from two SATs, and a large number of SMs to predict whether a source code file is vulnerable or not (binary classification) and to predict the vulnerability category (multiclass classification). Results show that one can achieve either high precision or high recall, but not both at the same time. To understand the reason, we analyze and compare snippets of source code, demonstrating that vulnerable and non-vulnerable files share similar characteristics, making it hard to distinguish vulnerable from non-vulnerable code based on SAT alerts and SMs.

2021-05-18
Tai, Zeming, Washizaki, Hironori, Fukazawa, Yoshiaki, Fujimatsu, Yurie, Kanai, Jun.  2020.  Binary Similarity Analysis for Vulnerability Detection. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1121–1122.
Binary similarity has been widely used in function recognition and vulnerability detection. How to define a proper similarity is the key element in implementing a fast detection method. We proposed a scalable method to detect binary vulnerabilities based on similarity. Procedures lifted from binaries are divided into several comparable strands by data dependency, and those strands are transformed into a normalized form by our tool named VulneraBin, so that similarity can be determined between two procedures through a hash value comparison. The low computational complexity allows semantically equivalent code to be identified in binaries compiled from million lines of source code in a fast and accurate way.
Zeng, Jingxiang, Nie, Xiaofan, Chen, Liwei, Li, Jinfeng, Du, Gewangzi, Shi, Gang.  2020.  An Efficient Vulnerability Extrapolation Using Similarity of Graph Kernel of PDGs. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1664–1671.
Discovering the potential vulnerabilities in software plays a crucial role in ensuring the security of computer system. This paper proposes a method that can assist security auditors with the analysis of source code. When security auditors identify new vulnerabilities, our method can be adopted to make a list of recommendations that may have the same vulnerabilities for the security auditors. Our method relies on graph representation to automatically extract the mode of PDG(program dependence graph, a structure composed of control dependence and data dependence). Besides, it can be applied to the vulnerability extrapolation scenario, thus reducing the amount of audit code. We worked on an open-source vulnerability test set called Juliet. According to the evaluation results, the clustering effect produced is satisfactory, so that the feature vectors extracted by the Graph2Vec model are applied to labeling and supervised learning indicators are adopted to assess the model for its ability to extract features. On a total of 12,000 small data sets, the training score of the model can reach up to 99.2%, and the test score can reach a maximum of 85.2%. Finally, the recommendation effect of our work is verified as satisfactory.
Chen, Haibo, Chen, Junzuo, Chen, Jinfu, Yin, Shang, Wu, Yiming, Xu, Jiaping.  2020.  An Automatic Vulnerability Scanner for Web Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1519–1524.
With the progressive development of web applications and the urgent requirement of web security, vulnerability scanner has been particularly emphasized, which is regarded as a fundamental component for web security assurance. Various scanners are developed with the intention of that discovering the possible vulnerabilities in advance to avoid malicious attacks. However, most of them only focus on the vulnerability detection with single target, which fail in satisfying the efficiency demand of users. In this paper, an effective web vulnerability scanner that integrates the information collection with the vulnerability detection is proposed to verify whether the target web application is vulnerable or not. The experimental results show that, by guiding the detection process with the useful collected information, our tool achieves great web vulnerability detection capability with a large scanning scope.
Feng, Qi, Feng, Chendong, Hong, Weijiang.  2020.  Graph Neural Network-based Vulnerability Predication. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). :800–801.
Automatic vulnerability detection is challenging. In this paper, we report our in-progress work of vulnerability prediction based on graph neural network (GNN). We propose a general GNN-based framework for predicting the vulnerabilities in program functions. We study the different instantiations of the framework in representative program graph representations, initial node encodings, and GNN learning methods. The preliminary experimental results on a representative benchmark indicate that the GNN-based method can improve the accuracy and recall rates of vulnerability prediction.
Sinhabahu, Nadun, Wimalaratne, Prasad, Wijesiriwardana, Chaman.  2020.  Secure Codecity with Evolution: Visualizing Security Vulnerability Evolution of Software Systems. 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). :1–2.
The analysis of large-scale software and finding security vulnerabilities while its evolving is difficult without using supplementary tools, because of the size and complexity of today's systems. However just by looking at a report, doesn't transmit the overall picture of the system in terms of security vulnerabilities and its evolution throughout the project lifecycle. Software visualization is a program comprehension technique used in the context of the present and explores large amounts of information precisely. For the analysis of security vulnerabilities of complex software systems, Secure Codecity with Evolution is an interactive 3D visualization tool that can be utilized. Its studies techniques and methods are used for graphically illustrating security aspects and the evolution of software. The Main goal of the proposed Framework defined as uplift, simplify, and clarify the mental representation that a software engineer has of a software system and its evolution in terms of its security. Static code was visualised based on a city metaphor, which represents classes as buildings and packages as districts of a city. Identified Vulnerabilities were represented in a different color according to the severity. To visualize a number of different aspects, A large variety of options were given. Users can evaluate the evolution of the security vulnerabilities of a system on several versions using Matrices provided which will help users go get an overall understanding about security vulnerabilities varies with different versions of software. This framework was implemented using SonarQube for software vulnerability detection and ThreeJs for implementing the City Metaphor. The evaluation results evidently show that our framework surpasses the existing tools in terms of accuracy, efficiency and usability.
Iorga, Denis, Corlătescu, Dragos, Grigorescu, Octavian, Săndescu, Cristian, Dascălu, Mihai, Rughiniş, Razvan.  2020.  Early Detection of Vulnerabilities from News Websites using Machine Learning Models. 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–6.
The drawbacks of traditional methods of cybernetic vulnerability detection relate to the required time to identify new threats, to register them in the Common Vulnerabilities and Exposures (CVE) records, and to score them with the Common Vulnerabilities Scoring System (CVSS). These problems can be mitigated by early vulnerability detection systems relying on social media and open-source data. This paper presents a model that aims to identify emerging cybernetic vulnerabilities in cybersecurity news articles, as part of a system for automatic detection of early cybernetic threats using Open Source Intelligence (OSINT). Three machine learning models were trained on a novel dataset of 1000 labeled news articles to create a strong baseline for classifying cybersecurity articles as relevant (i.e., introducing new security threats), or irrelevant: Support Vector Machines, a Multinomial Naïve Bayes classifier, and a finetuned BERT model. The BERT model obtained the best performance with a mean accuracy of 88.45% on the test dataset. Our experiments support the conclusion that Natural Language Processing (NLP) models are an appropriate choice for early vulnerability detection systems in order to extract relevant information from cybersecurity news articles.
Fidalgo, Ana, Medeiros, Ibéria, Antunes, Paulo, Neves, Nuno.  2020.  Towards a Deep Learning Model for Vulnerability Detection on Web Application Variants. 2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :465–476.
Reported vulnerabilities have grown significantly over the recent years, with SQL injection (SQLi) being one of the most prominent, especially in web applications. For these, such increase can be explained by the integration of multiple software parts (e.g., various plugins and modules), often developed by different organizations, composing thus web application variants. Machine Learning has the potential to be a great ally on finding vulnerabilities, aiding experts by reducing the search space or even by classifying programs on their own. However, previous work usually does not consider SQLi or utilizes techniques hard to scale. Moreover, there is a clear gap in vulnerability detection with machine learning for PHP, the most popular server-side language for web applications. This paper presents a Deep Learning model able to classify PHP slices as vulnerable (or not) to SQLi. As slices can belong to any variant, we propose the use of an intermediate language to represent the slices and interpret them as text, resorting to well-studied Natural Language Processing (NLP) techniques. Preliminary results of the use of the model show that it can discover SQLi, helping programmers and precluding attacks that would eventually cost a lot to repair.
Li, Zesong, Yang, Hui, Ge, Junwei, Yu, Qinyong.  2020.  Research on Dynamic Detection Method of Buffer Overflow Vulnerabilities Based on Complete Boundary Test. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :2246–2250.
At present, when the device management application programs the devices (such as mobile terminals, Internet of things terminals and devices, etc.), buffer overflow will inevitably occur due to the defects of filter input condition setting, variable type conversion error, logical judgment error, pointer reference error and so on. For this kind of software and its running environment, it is difficult to reduce the false positive rate and false negative rate with traditional static detection method for buffer overflow vulnerability, while the coverage rate of dynamic detection method is still insufficient and it is difficult to achieve full automation. In view of this, this paper proposes an automatic dynamic detection method based on boundary testing, which has complete test data set and full coverage of defects. With this method, the input test points of the software system under test are automatically traversed, and each input test point is analyzed automatically to generate complete test data; driven by the above complete test data, the software under test runs automatically, in which the embedded dynamic detection code automatically judges the conditions of overflow occurrence, and returns the overflow information including the location of the error code before the overflow really occurs. Because the overflow can be located accurately without real overflow occurrence, this method can ensure the normal detection of the next input test point, thus ensuring the continuity of the whole automatic detection process and the full coverage of buffer overflow detection. The test results show that all the indexes meet the requirements of the method and design.