Visible to the public Biblio

Found 2348 results

Filters: Keyword is privacy  [Clear All Filters]
2020-10-26
Eryonucu, Cihan, Ayday, Erman, Zeydan, Engin.  2018.  A Demonstration of Privacy-Preserving Aggregate Queries for Optimal Location Selection. 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :1–3.
In recent years, service providers, such as mobile operators providing wireless services, collected location data in enormous extent with the increase of the usages of mobile phones. Vertical businesses, such as banks, may want to use this location information for their own scenarios. However, service providers cannot directly provide these private data to the vertical businesses because of the privacy and legal issues. In this demo, we show how privacy preserving solutions can be utilized using such location-based queries without revealing each organization's sensitive data. In our demonstration, we used partially homomorphic cryptosystem in our protocols and showed practicality and feasibility of our proposed solution.
Rimjhim, Roy, Pradeep Kumar, Prakash Singh, Jyoti.  2018.  Encircling the Base Station for Source Location Privacy in Wireless Sensor Networks. 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS). :307–312.
Location Privacy breach in Wireless Sensor Networks (WSNs) cannot be controlled by encryption techniques as all the communications are signal based. Signal strength can be analyzed to reveal many routing information. Adversary takes advantage of this and tracks the incoming packet to know the direction of the packet. With the information of location of origin of packets, the Source is also exposed which is generating packets on sensing any object. Thus, the location of subject is exposed. For protecting such privacy breaches, routing schemes are used which create anonymization or diverts the adversary. In this paper, we are using `Dummy' packets that will be inserted into real traffic to confuse the adversary. The dummy packets are such inserted that they encircle the Sink or Base Station. These Dummy packets are send with a value of TTL (Time To Live) field such that they travel only a few hops. Since adversary starts backtracking from the Sink, it will be trapped in the dummy traffic. In our protocol, we are confusing adversary without introducing any delay in packet delivery. Adversary uses two common methods for knowing the source i.e. Traffic Analysis and Back-tracing. Mathematically and experimentally, our proposal is sound for both type of methods. Overhead is also balanced as packets will not live long.
Miao, Xu, Han, Guangjie, He, Yu, Wang, Hao, Jiang, Jinfang.  2018.  A Protecting Source-Location Privacy Scheme for Wireless Sensor Networks. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–5.
An exciting network called smart IoT has great potential to improve the level of our daily activities and the communication. Source location privacy is one of the critical problems in the wireless sensor network (WSN). Privacy protections, especially source location protection, prevent sensor nodes from revealing valuable information about targets. In this paper, we first discuss about the current security architecture and attack modes. Then we propose a scheme based on cloud for protecting source location, which is named CPSLP. This proposed CPSLP scheme transforms the location of the hotspot to cause an obvious traffic inconsistency. We adopt multiple sinks to change the destination of packet randomly in each transmission. The intermediate node makes routing path more varied. The simulation results demonstrate that our scheme can confuse the detection of adversary and reduce the capture probability.
Mutalemwa, Lilian C., Shin, Seokjoo.  2018.  Realizing Source Location Privacy in Wireless Sensor Networks Through Agent Node Routing. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1283–1285.
Wireless Sensor Networks (WSNs) are used in sensitive applications such as in asset monitoring applications. Due to the sensitivity of information in these applications, it is important to ensure that flow of data between sensor nodes is secure and does not expose any information about the source node or the monitored assets. This paper proposes a scheme to preserve the source location privacy based on random routing techniques. To achieve high privacy, the proposed scheme randomly sends packet to sink node through tactically positioned agent nodes. The position of agent nodes is designed to guarantee that successive packets are routed through highly random and perplexing routing paths as compared to other routing schemes. Simulation results demonstrate that proposed scheme provides longer safety period and higher privacy against both, patient and cautious adversaries.
Adilbekov, Ulugbek, Adilova, Anar, Saginbekov, Sain.  2018.  Providing Location Privacy Using Fake Sources in Wireless Sensor Networks. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). :1–4.
Wireless Sensor Networks (WSNs) consist of low-cost, resource-constrained sensor nodes and a designated node called a sink which collects data from the sensor nodes. A WSN can be used in numerous applications such as subject tracking and monitoring, where it is often desirable to keep the location of the subject private. Without location privacy protection, an adversary can locate the subject. In this paper, we propose an algorithm that tries to keep the subject location private from a global adversary, which can see the entire network traffic, in an energy efficient way.
2020-10-19
Sun, Pan Jun.  2019.  Privacy Protection and Data Security in Cloud Computing: A Survey, Challenges, and Solutions. IEEE Access. 7:147420–147452.
Privacy and security are the most important issues to the popularity of cloud computing service. In recent years, there are many research schemes of cloud computing privacy protection based on access control, attribute-based encryption (ABE), trust and reputation, but they are scattered and lack unified logic. In this paper, we systematically review and analyze relevant research achievements. First, we discuss the architecture, concepts and several shortcomings of cloud computing, and propose a framework of privacy protection; second, we discuss and analyze basic ABE, KP-ABE (key policy attribute-based encryption), CP-ABE (ciphertext policy attribute-based encryption), access structure, revocation mechanism, multi-authority, fine-grained, trace mechanism, proxy re-encryption (PRE), hierarchical encryption, searchable encryption (SE), trust, reputation, extension of tradition access control and hierarchical key; third, we propose the research challenge and future direction of the privacy protection in the cloud computing; finally, we point out corresponding privacy protection laws to make up for the technical deficiencies.
Bao, Shihan, Lei, Ao, Cruickshank, Haitham, Sun, Zhili, Asuquo, Philip, Hathal, Waleed.  2019.  A Pseudonym Certificate Management Scheme Based on Blockchain for Internet of Vehicles. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :28–35.
Research into the established area of ITS is evolving into the Internet of Vehicles (IoV), itself a fast-moving research area, fuelled in part by rapid changes in computing and communication technologies. Using pseudonym certificate is a popular way to address privacy issues in IoV. Therefore, the certificate management scheme is considered as a feasible technique to manage system and maintain the lifecycle of certificate. In this paper, we propose an efficient pseudonym certificate management scheme in IoV. The Blockchain concept is introduced to simplify the network structure and distributed maintenance of the Certificate Revocation List (CRL). The proposed scheme embeds part of the certificate revocation functions within the security and privacy applications, aiming to reduce the communication overhead and shorten the processing time cost. Extensive simulations and analysis show the effectiveness and efficiency of the proposed scheme, in which the Blockchain structure costs fewer network resources and gives a more economic solution to against further cybercrime attacks.
Sharma, Sachin, Ghanshala, Kamal Kumar, Mohan, Seshadri.  2019.  Blockchain-Based Internet of Vehicles (IoV): An Efficient Secure Ad Hoc Vehicular Networking Architecture. 2019 IEEE 2nd 5G World Forum (5GWF). :452–457.
With the transformation of connected vehicles into the Internet of Vehicles (IoV), the time is now ripe for paving the way for the next generation of connected vehicles with novel applications and innovative security measures. The connected vehicles are experiencing prenominal growth in the auto industry, but are still studded with many security and privacy vulnerabilities. Today's IoV applications are part of cyber physical communication systems that collect useful information from thousands of smart sensors associated with the connected vehicles. The technology advancement has paved the way for connected vehicles to share significant information among drivers, auto manufacturers, auto insurance companies and operational and maintenance service providers for various applications. The critical issues in engineering the IoV applications are effective to use of the available spectrum and effective allocation of good channels an opportunistic manner to establish connectivity among vehicles, and the effective utilization of the infrastructure under various traffic conditions. Security and privacy in information sharing are the main concerns in a connected vehicle communication network. Blockchain technology facilitates secured communication among users in a connected vehicles network. Originally, blockchain technology was developed and employed with the cryptocurrency. Bitcoin, to provide increased trust, reliability, and security among users based on peer-to-peer networks for transaction sharing. In this paper, we propose to integrate blockchain technology into ad hoc vehicular networking so that the vehicles can share network resources with increased trust, reliability, and security using distributed access control system and can benefit a wider scope of scalable IoV applications scenarios for decision making. The proposed architecture is the faithful environment for information sharing among connected vehicles. Blockchain technology allows multiple copies of data storage at the distribution cloud. Distributed access control system is significantly more secure than a traditional centralized system. This paper also describes how important of ad hoc vehicular networking in human life, possibilities in real-world implementation and its future trends. The ad hoc vehicular networking may become one of the most trendy networking concepts in the future that has the perspective to bring out much ease human beneficial and secured applications.
2020-10-16
Liu, Liping, Piao, Chunhui, Jiang, Xuehong, Zheng, Lijuan.  2018.  Research on Governmental Data Sharing Based on Local Differential Privacy Approach. 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE). :39—45.

With the construction and implementation of the government information resources sharing mechanism, the protection of citizens' privacy has become a vital issue for government departments and the public. This paper discusses the risk of citizens' privacy disclosure related to data sharing among government departments, and analyzes the current major privacy protection models for data sharing. Aiming at the issues of low efficiency and low reliability in existing e-government applications, a statistical data sharing framework among governmental departments based on local differential privacy and blockchain is established, and its applicability and advantages are illustrated through example analysis. The characteristics of the private blockchain enhance the security, credibility and responsiveness of information sharing between departments. Local differential privacy provides better usability and security for sharing statistics. It not only keeps statistics available, but also protects the privacy of citizens.

AlEnezi, Ali, AlMeraj, Zainab, Manuel, Paul.  2018.  Challenges of IoT Based Smart-Government Development. 2018 IEEE Green Technologies Conference (GreenTech). :155—160.

Smart governments are known as extensions of e-governments both built on the Internet of Things (IoT). In this paper, we classify smart governments into two types (1) new generation and (2) extended smart-government. We then put forth a framework for smart governments implementation and discuss the major challenges in its implementation showing security as the most prominent challenge in USA, mindscaping in Kuwait and investment in India.

Supriyanto, Aji, Diartono, Dwi Agus, Hartono, Budi, Februariyanti, Herny.  2019.  Inclusive Security Models To Building E-Government Trust. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). :1—6.

The low attention to security and privacy causes some problems on data and information that can lead to a lack of public trust in e-Gov service. Security threats are not only included in technical issues but also non-technical issues and therefore, it needs the implementation of inclusive security. The application of inclusive security to e-Gov needs to develop a model involving security and privacy requirements as a trusted security solution. The method used is the elicitation of security and privacy requirements in a security perspective. Identification is carried out on security and privacy properties, then security and privacy relationships are determined. The next step is developing the design of an inclusive security model on e-Gov. The last step is doing an analysis of e-Gov service activities and the role of inclusive security. The results of this study identified security and privacy requirements for building inclusive security. Identification of security requirements involves properties such as confidentiality (C), integrity (I), availability (A). Meanwhile, privacy requirement involves authentication (Au), authorization (Az), and Non-repudiation (Nr) properties. Furthermore, an inclusive security design model on e-Gov requires trust of internet (ToI) and trust of government (ToG) as an e-Gov service provider. Access control is needed to provide solutions to e-Gov service activities.

Bayaga, Anass, Ophoff, Jacques.  2019.  Determinants of E-Government Use in Developing Countries: The Influence of Privacy and Security Concerns. 2019 Conference on Next Generation Computing Applications (NextComp). :1—7.

There has been growing concern about privacy and security risks towards electronic-government (e-government) services adoption. Though there are positive results of e- government, there are still other contestable challenges that hamper success of e-government services. While many of the challenges have received considerable attention, there is still little to no firm research on others such as privacy and security risks, effects of infrastructure both in urban and rural settings. Other concerns that have received little consideration are how for instance; e-government serves as a function of perceived usefulness, ease of use, perceived benefit, as well as cultural dimensions and demographic constructs in South Africa. Guided by technology acceptance model, privacy calculus, Hofstede cultural theory and institutional logic theory, the current research sought to examine determinants of e- government use in developing countries. Anchored upon the aforementioned theories and background, the current study proposed three recommendations as potential value chain, derived from e-government service in response to citizens (end- user) support, government and community of stakeholders.

Shayganmehr, Masoud, Montazer, Gholam Ali.  2019.  Identifying Indexes Affecting the Quality of E-Government Websites. 2019 5th International Conference on Web Research (ICWR). :167—171.

With the development of new technologies in the world, governments have tendency to make a communications with people and business with the help of such technologies. Electronic government (e-government) is defined as utilizing information technologies such as electronic networks, Internet and mobile phones by organizations and state institutions in order to making wide communication between citizens, business and different state institutions. Development of e-government starts with making website in order to share information with users and is considered as the main infrastructure for further development. Website assessment is considered as a way for improving service quality. Different international researches have introduced various indexes for website assessment, they only see some dimensions of website in their research. In this paper, the most important indexes for website quality assessment based on accurate review of previous studies are "Web design", "navigation", services", "maintenance and Support", "Citizens Participation", "Information Quality", "Privacy and Security", "Responsiveness", "Usability". Considering mentioned indexes in designing the website facilitates user interaction with the e-government websites.

Cho, Sang Hyun, Oh, Sae Yong, Rou, Ho Gun, Gim, Gwang Yong.  2019.  A Study on The Factors Affecting The Continuous Use of E-Government Services - Focused on Privacy and Security Concerns-. 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). :351—361.

In this study, we conducted a survey of those who have used E-Government Services (civil servants, employees of public institutions, and the public) to empirically identify the factors affecting the continuous use intention E-Government Services, and conducted an empirical analysis using SPSS and Smart PLS with 284 valid samples except for dual, error and poor answers. Based on the success model of the information system (IS access model), we set independent variables which were divided into quality factors (service quality, system quality, information quality) and risk factors (personal information and security), and perceived ease of use and reliability, which are the main variables based on the technology acceptance model (TAM) that best describes the parameter group, were established as useful parameters. In addition, we design the research model by setting user satisfaction and the continuous use intention as dependent variables, conducted the study about how affecting factors influence to the acceptance factors through 14 hypotheses.The study found that 12 from 14 hypotheses were adopted and 2 were rejected. Looking at the results derived, it was analyzed that, firstly, 3 quality factors all affect perceived ease of use in relation to the quality of service, system quality, information quality which are perceived ease of use of E-Government Services. Second, in relation to the quality of service quality, system quality, information quality and perceived usefulness which are the quality factors of E-Government Services, the quality of service and information quality affect perceived usefulness, but system quality does not affect perceived usefulness. Third, it was analyzed that both factors influence reliability in the relationship between Privacy and security and trust which are risk factors. Fourth, the relationship between perceived ease of use and perceived usefulness has shown that perceived ease of use does not affect perceived usefulness. Finally, the relationship between user value factors (perceptual usability, perceived usefulness and trust) and user satisfaction and the continuous use intention was analyzed that user value factors affect user satisfaction while user satisfaction affects the continuous use intention. This study can be meaningful in that it theoretically presented the factors influencing the continued acceptance of e-government services through precedent research, presented the variables and measurement items verified through the empirical analysis process, and verified the causal relationship between the variables. The e-government service can contribute to the implementation of e-government in line with the era of the 4th Industrial Revolution by using it as a reference to the establishment of policies to improve the quality of people's lives and provide convenient services to the people.

2020-10-12
Kautsarina, Anggorojati, Bayu.  2018.  A Conceptual Model for Promoting Positive Security Behavior in Internet of Things Era. 2018 Global Wireless Summit (GWS). :358–363.
As the Internet of Things (IoT) era raise, billions of additional connected devices in new locations and applications will create new challenges. Security and privacy are among the major challenges in IoT as any breaches and misuse in those aspects will have the adverse impact on users. Among many factors that determine the security of any system, human factor is the most important aspect to be considered; as it is renowned that human is the weakest link in the information security cycle. Experts express the need to increase cyber resilience culture and a focus on the human factors involved in cybersecurity to counter cyber risks. The aim of this study is to propose a conceptual model to improve cyber resilience in IoT users that is adapted from a model in public health sector. Cyber resilience is improved through promoting security behavior by gathering the existing knowledge and gain understanding about every contributing aspects. The proposed approach is expected to be used as foundation for government, especially in Indonesia, to derive strategies in improving cyber resilience of IoT users.
Marrone, Stefano, Sansone, Carlo.  2019.  An Adversarial Perturbation Approach Against CNN-based Soft Biometrics Detection. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.
The use of biometric-based authentication systems spread over daily life consumer electronics. Over the years, researchers' interest shifted from hard (such as fingerprints, voice and keystroke dynamics) to soft biometrics (such as age, ethnicity and gender), mainly by using the latter to improve the authentication systems effectiveness. While newer approaches are constantly being proposed by domain experts, in the last years Deep Learning has raised in many computer vision tasks, also becoming the current state-of-art for several biometric approaches. However, since the automatic processing of data rich in sensitive information could expose users to privacy threats associated to their unfair use (i.e. gender or ethnicity), in the last years researchers started to focus on the development of defensive strategies in the view of a more secure and private AI. The aim of this work is to exploit Adversarial Perturbation, namely approaches able to mislead state-of-the-art CNNs by injecting a suitable small perturbation over the input image, to protect subjects against unwanted soft biometrics-based identification by automatic means. In particular, since ethnicity is one of the most critical soft biometrics, as a case of study we will focus on the generation of adversarial stickers that, once printed, can hide subjects ethnicity in a real-world scenario.
Chia, Pern Hui, Desfontaines, Damien, Perera, Irippuge Milinda, Simmons-Marengo, Daniel, Li, Chao, Day, Wei-Yen, Wang, Qiushi, Guevara, Miguel.  2019.  KHyperLogLog: Estimating Reidentifiability and Joinability of Large Data at Scale. 2019 IEEE Symposium on Security and Privacy (SP). :350–364.
Understanding the privacy relevant characteristics of data sets, such as reidentifiability and joinability, is crucial for data governance, yet can be difficult for large data sets. While computing the data characteristics by brute force is straightforward, the scale of systems and data collected by large organizations demands an efficient approach. We present KHyperLogLog (KHLL), an algorithm based on approximate counting techniques that can estimate the reidentifiability and joinability risks of very large databases using linear runtime and minimal memory. KHLL enables one to measure reidentifiability of data quantitatively, rather than based on expert judgement or manual reviews. Meanwhile, joinability analysis using KHLL helps ensure the separation of pseudonymous and identified data sets. We describe how organizations can use KHLL to improve protection of user privacy. The efficiency of KHLL allows one to schedule periodic analyses that detect any deviations from the expected risks over time as a regression test for privacy. We validate the performance and accuracy of KHLL through experiments using proprietary and publicly available data sets.
Foreman, Zackary, Bekman, Thomas, Augustine, Thomas, Jafarian, Haadi.  2019.  PAVSS: Privacy Assessment Vulnerability Scoring System. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :160–165.
Currently, the guidelines for business entities to collect and use consumer information from online sources is guided by the Fair Information Practice Principles set forth by the Federal Trade Commission in the United States. These guidelines are inadequate, outdated, and provide little protection for consumers. Moreover, there are many techniques to anonymize the stored data that was collected by large companies and governments. However, what does not exist is a framework that is capable of evaluating and scoring the effects of this information in the event of a data breach. In this work, a framework for scoring and evaluating the vulnerability of private data is presented. This framework is created to be used in parallel with currently adopted frameworks that are used to score and evaluate other areas of deficiencies within the software, including CVSS and CWSS. It is dubbed the Privacy Assessment Vulnerability Scoring System (PAVSS) and quantifies the privacy-breach vulnerability an individual takes on when using an online platform. This framework is based on a set of hypotheses about user behavior, inherent properties of an online platform, and the usefulness of available data in performing a cyber attack. The weight each of these metrics has within our model is determined by surveying cybersecurity experts. Finally, we test the validity of our user-behavior based hypotheses, and indirectly our model by analyzing user posts from a large twitter data set.
Luma, Artan, Abazi, Blerton, Aliu, Azir.  2019.  An approach to Privacy on Recommended Systems. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–5.
Recommended systems are very popular nowadays. They are used online to help a user get the desired product quickly. Recommended Systems are found on almost every website, especially big companies such as Facebook, eBay, Amazon, NetFlix, and others. In specific cases, these systems help the user find a book, movie, article, product of his or her preference, and are also used on social networks to meet friends who share similar interests in different fields. These companies use referral systems because they bring amazing benefits in a very fast time. To generate more accurate recommendations, recommended systems are based on the user's personal information, eg: different ratings, history observation, personal profiles, etc. Use of these systems is very necessary but the way this information is received, and the privacy of this information is almost constantly ignored. Many users are unaware of how their information is received and how it is used. This paper will discuss how recommended systems work in different online companies and how safe they are to use without compromising their privacy. Given the widespread use of these systems, an important issue has arisen regarding user privacy and security. Collecting personal information from recommended systems increases the risk of unwanted exposure to that information. As a result of this paper, the reader will be aware of the functioning of Recommended systems, the way they receive and use their information, and will also discuss privacy protection techniques against Recommended systems.
2020-10-05
Joseph, Matthew, Mao, Jieming, Neel, Seth, Roth, Aaron.  2019.  The Role of Interactivity in Local Differential Privacy. 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). :94—105.

We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive compositional protocol into an equivalent sequentially interactive protocol with a blowup in sample complexity linear in this compositionality. Next, we show that our reduction is tight by exhibiting a family of problems such that any sequentially interactive protocol requires this blowup in sample complexity over a fully interactive compositional protocol. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems - which include all simple hypothesis testing problems as a special case - a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests.

2020-09-28
Andreoletti, Davide, Rottondi, Cristina, Giordano, Silvia, Verticale, Giacomo, Tornatore, Massimo.  2019.  An Open Privacy-Preserving and Scalable Protocol for a Network-Neutrality Compliant Caching. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
The distribution of video contents generated by Content Providers (CPs) significantly contributes to increase the congestion within the networks of Internet Service Providers (ISPs). To alleviate this problem, CPs can serve a portion of their catalogues to the end users directly from servers (i.e., the caches) located inside the ISP network. Users served from caches perceive an increased QoS (e.g., average retrieval latency is reduced) and, for this reason, caching can be considered a form of traffic prioritization. Hence, since the storage of caches is limited, its subdivision among several CPs may lead to discrimination. A static subdivision that assignes to each CP the same portion of storage is a neutral but ineffective appraoch, because it does not consider the different popularities of the CPs' contents. A more effective strategy consists in dividing the cache among the CPs proportionally to the popularity of their contents. However, CPs consider this information sensitive and are reluctant to disclose it. In this work, we propose a protocol based on Shamir Secret Sharing (SSS) scheme that allows the ISP to calculate the portion of cache storage that a CP is entitled to receive while guaranteeing network neutrality and resource efficiency, but without violating its privacy. The protocol is executed by the ISP, the CPs and a Regulator Authority (RA) that guarantees the actual enforcement of a fair subdivision of the cache storage and the preservation of privacy. We perform extensive simulations and prove that our approach leads to higher hit-rates (i.e., percentage of requests served by the cache) with respect to the static one. The advantages are particularly significant when the cache storage is limited.
Evans, David, Calvo, Daniel, Arroyo, Adrian, Manilla, Alejandro, Gómez, David.  2019.  End-to-end security assessment framework for connected vehicles. 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC). :1–6.
To increase security and to offer user experiences according to the requirements of a hyper-connected world, modern vehicles are integrating complex electronic systems, being transformed into systems of Cyber-Physical Systems (CPS). While a great diversity of heterogeneous hardware and software components must work together and control in real-time crucial functionalities, cybersecurity for the automotive sector is still in its infancy. This paper provides an analysis of the most common vulnerabilities and risks of connected vehicles, using a real example based on industrial and market-ready technologies. Several components have been implemented to inject and simulate multiple attacks, which enable security services and mitigation actions to be developed and validated.
Patsonakis, Christos, Terzi, Sofia, Moschos, Ioannis, Ioannidis, Dimosthenis, Votis, Konstantinos, Tzovaras, Dimitrios.  2019.  Permissioned Blockchains and Virtual Nodes for Reinforcing Trust Between Aggregators and Prosumers in Energy Demand Response Scenarios. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The advancement and penetration of distributed energy resources (DERs) and renewable energy sources (RES) are transforming legacy energy systems in an attempt to reduce carbon emissions and energy waste. Demand Response (DR) has been identified as a key enabler of integrating these, and other, Smart Grid technologies, while, simultaneously, ensuring grid stability and secure energy supply. The massive deployment of smart meters, IoT devices and DERs dictate the need to move to decentralized, or even localized, DR schemes in the face of the increased scale and complexity of monitoring and coordinating the actors and devices in modern smart grids. Furthermore, there is an inherent need to guarantee interoperability, due to the vast number of, e.g., hardware and software stakeholders, and, more importantly, promote trust and incentivize the participation of customers in DR schemes, if they are to be successfully deployed.In this work, we illustrate the design of an energy system that addresses all of the roadblocks that hinder the large scale deployment of DR services. Our DR framework incorporates modern Smart Grid technologies, such as fog-enabled and IoT devices, DERs and RES to, among others, automate asset handling and various time-consuming workflows. To guarantee interoperability, our system employs OpenADR, which standardizes the communication of DR signals among energy stakeholders. Our approach acknowledges the need for decentralization and employs blockchains and smart contracts to deliver a secure, privacy-preserving, tamper-resistant, auditable and reliable DR framework. Blockchains provide the infrastructure to design innovative DR schemes and incentivize active consumer participation as their aforementioned properties promote transparency and trust. In addition, we harness the power of smart contracts which allows us to design and implement fully automated contractual agreements both among involved stakeholders, as well as on a machine-to-machine basis. Smart contracts are digital agents that "live" in the blockchain and can encode, execute and enforce arbitrary agreements. To illustrate the potential and effectiveness of our smart contract-based DR framework, we present a case study that describes the exchange of DR signals and the autonomous instantiation of smart contracts among involved participants to mediate and monitor transactions, enforce contractual clauses, regulate energy supply and handle payments/penalties.
Kandah, Farah, Cancelleri, Joseph, Reising, Donald, Altarawneh, Amani, Skjellum, Anthony.  2019.  A Hardware-Software Codesign Approach to Identity, Trust, and Resilience for IoT/CPS at Scale. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1125–1134.
Advancement in communication technologies and the Internet of Things (IoT) is driving adoption in smart cities that aims to increase operational efficiency and improve the quality of services and citizen welfare, among other potential benefits. The privacy, reliability, and integrity of communications must be ensured so that actions can be appropriate, safe, accurate, and implemented promptly after receiving actionable information. In this work, we present a multi-tier methodology consisting of an authentication and trust-building/distribution framework designed to ensure the safety and validity of the information exchanged in the system. Blockchain protocols and Radio Frequency-Distinct Native Attributes (RF-DNA) combine to provide a hardware-software codesigned system for enhanced device identity and overall system trustworthiness. Our threat model accounts for counterfeiting, breakout fraud, and bad mouthing of one entity by others. Entity trust (e.g., IoT devices) depends on quality and level of participation, quality of messages, lifetime of a given entity in the system, and the number of known "bad" (non-consensus) messages sent by that entity. Based on this approach to trust, we are able to adjust trust upward and downward as a function of real-time and past behavior, providing other participants with a trust value upon which to judge information from and interactions with the given entity. This approach thereby reduces the potential for manipulation of an IoT system by a bad or byzantine actor.
Madhan, E.S., Ghosh, Uttam, Tosh, Deepak K., Mandal, K., Murali, E., Ghosh, Soumalya.  2019.  An Improved Communications in Cyber Physical System Architecture, Protocols and Applications. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–6.
In recent trends, Cyber-Physical Systems (CPS) and Internet of Things interpret an evolution of computerized integration connectivity. The specific research challenges in CPS as security, privacy, data analytics, participate sensing, smart decision making. In addition, The challenges in Wireless Sensor Network (WSN) includes secure architecture, energy efficient protocols and quality of services. In this paper, we present an architectures of CPS and its protocols and applications. We propose software related mobile sensing paradigm namely Mobile Sensor Information Agent (MSIA). It works as plug-in based for CPS middleware and scalable applications in mobile devices. The working principle MSIA is acts intermediary device and gathers data from a various external sensors and its upload to cloud on demand. CPS needs tight integration between cyber world and man-made physical world to achieve stability, security, reliability, robustness, and efficiency in the system. Emerging software-defined networking (SDN) can be integrated as the communication infrastructure with CPS infrastructure to accomplish such system. Thus we propose a possible SDN-based CPS framework to improve the performance of the system.