Visible to the public Biblio

Found 152 results

Filters: Keyword is cloud  [Clear All Filters]
2021-03-29
Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

2021-03-01
Raj, C., Khular, L., Raj, G..  2020.  Clustering Based Incident Handling For Anomaly Detection in Cloud Infrastructures. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :611–616.
Incident Handling for Cloud Infrastructures focuses on how the clustering based and non-clustering based algorithms can be implemented. Our research focuses in identifying anomalies and suspicious activities that might happen inside a Cloud Infrastructure over available datasets. A brief study has been conducted, where a network statistics dataset the NSL-KDD, has been chosen as the model to be worked upon, such that it can mirror the Cloud Infrastructure and its components. An important aspect of cloud security is to implement anomaly detection mechanisms, in order to monitor the incidents that inhibit the development and the efficiency of the cloud. Several methods have been discovered which help in achieving our present goal, some of these are highlighted as the following; by applying algorithm such as the Local Outlier Factor to cancel the noise created by irrelevant data points, by applying the DBSCAN algorithm which can detect less denser areas in order to identify their cause of clustering, the K-Means algorithm to generate positive and negative clusters to identify the anomalous clusters and by applying the Isolation Forest algorithm in order to implement decision based approach to detect anomalies. The best algorithm would help in finding and fixing the anomalies efficiently and would help us in developing an Incident Handling model for the Cloud.
2020-12-07
Silva, J. L. da, Assis, M. M., Braga, A., Moraes, R..  2019.  Deploying Privacy as a Service within a Cloud-Based Framework. 2019 9th Latin-American Symposium on Dependable Computing (LADC). :1–4.
Continuous monitoring and risk assessment of privacy violations on cloud systems are needed by anyone who has business needs subject to privacy regulations. Compliance to such regulations in dynamic systems demands appropriate techniques, tools and instruments. As a Service concepts can be a good option to support this task. Previous work presented PRIVAaaS, a software toolkit that allows controlling and reducing data leakages, thus preserving privacy, by providing anonymization capabilities to query-based systems. This short paper discusses the implementation details and deployment environment of an evolution of PRIVAaaS as a MAPE-K control loop within the ATMOSPHERE Platform. ATMOSPHERE is both a framework and a platform enabling the implementation of trustworthy cloud services. By enabling PRIVAaaS within ATMOSPHERE, privacy is made one of several trustworthiness properties continuously monitored and assessed by the platform with a software-based, feedback control loop known as MAPE-K.
More, P. H., Dongre, M. M..  2019.  Partially Predictable Vehicular Ad-hoc Network: Trustworthiness and Security. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). :1–5.
VANET is an emerging technology incorporating ad hoc network to accomplish intelligent communications between vehicles, improvement in road traffic efficiency and safety. In some situations movement of vehicles is in a certain range, over particular distance or just in a specific tendency. Such a network can be called as incompletely or partially predictable network. An efficient use of such network, position and motion of nodes as well as relative history in big data is an open issue in vehicular ad hoc network. A hybrid protocol which provides secure and trustworthiness evaluation based routing can be used in VANET. Here Secure Trustworthiness Evaluation Based Routing Protocol is implemented using NS2 software. Its performance is very good in terms of the Average End to End Delay, Packet Delivery Ratio and Normalized Routing Overhead.
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
2020-09-21
Sultangazin, Alimzhan, Tabuada, Paulo.  2019.  Symmetries and privacy in control over the cloud: uncertainty sets and side knowledge*. 2019 IEEE 58th Conference on Decision and Control (CDC). :7209–7214.
Control algorithms, like model predictive control, can be computationally expensive and may benefit from being executed over the cloud. This is especially the case for nodes at the edge of a network since they tend to have reduced computational capabilities. However, control over the cloud requires transmission of sensitive data (e.g., system dynamics, measurements) which undermines privacy of these nodes. When choosing a method to protect the privacy of these data, efficiency must be considered to the same extent as privacy guarantees to ensure adequate control performance. In this paper, we review a transformation-based method for protecting privacy, previously introduced by the authors, and quantify the level of privacy it provides. Moreover, we also consider the case of adversaries with side knowledge and quantify how much privacy is lost as a function of the side knowledge of the adversary.
2020-09-08
Mavridis, Ilias, Karatza, Helen.  2019.  Lightweight Virtualization Approaches for Software-Defined Systems and Cloud Computing: An Evaluation of Unikernels and Containers. 2019 Sixth International Conference on Software Defined Systems (SDS). :171–178.
Software defined systems use virtualization technologies to provide an abstraction of the hardware infrastructure at different layers. Ultimately, the adoption of software defined systems in all cloud infrastructure components will lead to Software Defined Cloud Computing. Nevertheless, virtualization has already been used for years and is a key element of cloud computing. Traditionally, virtual machines are deployed in cloud infrastructure and used to execute applications on common operating systems. New lightweight virtualization technologies, such as containers and unikernels, appeared later to improve resource efficiency and facilitate the decomposition of big monolithic applications into multiple, smaller services. In this work, we present and empirically evaluate four popular unikernel technologies, Docker containers and Docker LinuxKit. We deployed containers both on bare metal and on virtual machines. To fairly evaluate their performance, we created similar applications for unikernels and containers. Additionally, we deployed full-fledged database applications ported on both virtualization technologies. Although in bibliography there are a few studies which compare unikernels and containers, in our study for the first time, we provide a comprehensive performance evaluation of clean-slate and legacy unikernels, Docker containers and Docker LinuxKit.
2020-08-24
Al-Odat, Zeyad A., Khan, Samee U..  2019.  Anonymous Privacy-Preserving Scheme for Big Data Over the Cloud. 2019 IEEE International Conference on Big Data (Big Data). :5711–5717.
This paper introduces an anonymous privacy-preserving scheme for big data over the cloud. The proposed design helps to enhance the encryption/decryption time of big data by utilizing the MapReduce framework. The Hadoop distributed file system and the secure hash algorithm are employed to provide the anonymity, security and efficiency requirements for the proposed scheme. The experimental results show a significant enhancement in the computational time of data encryption and decryption.
2020-07-13
Abur, Maria M., Junaidu, Sahalu B., Obiniyi, Afolayan A., Abdullahi, Saleh E..  2019.  Privacy Token Technique for Protecting User’s Attributes in a Federated Identity Management System for the Cloud Environment. 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf). :1–10.
Once an individual employs the use of the Internet for accessing information; carrying out transactions and sharing of data on the Cloud, they are connected to diverse computers on the network. As such, security of such transmitted data is most threatened and then potentially creating privacy risks of users on the federated identity management system in the Cloud. Usually, User's attributes or Personal Identifiable Information (PII) are needed to access Services on the Cloud from different Service Providers (SPs). Sometime these SPs may by themselves violate user's privacy by the reuse of user's attributes offered them for the release of services to the users without their consent and then carrying out activities that may appear malicious and then causing damage to the users. Similarly, it should be noted that sensitive user's attributes (e.g. first name, email, address and the likes) are received in their original form by needed SPs in plaintext. As a result of these problems, user's privacy is being violated. Since these SPs may reuse them or connive with other SPs to expose a user's identity in the cloud environment. This research is motivated to provide a protective and novel approach that shall no longer release original user's attributes to SPs but pseudonyms that shall prevent the SPs from violating user's privacy through connivance to expose the user's identity or other means. The paper introduces a conceptual framework for the proposed user's attributes privacy protection in a federated identity management system for the cloud. On the proposed system, the use of pseudonymous technique also called Privacy Token (PT) is employed. The pseudonymous technique ensures users' original attributes values are not sent directly to the SP but auto generated pseudo attributes values. The PT is composed of: Pseudo Attribute values, Timestamp and SPİD. These composition of the PT makes it difficult for the User's PII to be revealed and further preventing the SPs from being able to keep them or reuse them in the future without the user's consent for any purpose. Another important feature of the PT is its ability to forestall collusion among several collaborating service providers. This is due to the fact that each SP receives pseudo values that have no direct link to the identity of the user. The prototype was implemented with Java programming language and its performance tested on CloudAnalyst simulation.
2020-06-22
Beheshti-Atashgah, Mohammad, Aref, Mohammd Reza, Bayat, Majid, Barari, Morteza.  2019.  ID-based Strong Designated Verifier Signature Scheme and its Applications in Internet of Things. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1486–1491.
Strong designated verifier signature scheme is a concept in which a user (signer) can issue a digital signature for a special receiver; i.e. signature is produced in such way that only intended verifier can check the validity of produced signature. Of course, this type of signature scheme should be such that no third party is able to validate the signature. In other words, the related designated verifier cannot assign the issued signature to another third party. This article proposes a new ID-based strong designated verifier signature scheme which has provable security in the ROM (Random Oracle Model) and BDH assumption. The proposed scheme satisfies the all security requirements of an ID-based strong designated verifier signature scheme. In addition, we propose some usage scenarios for the proposed schemes in different applications in the Internet of Things and Cloud Computing era.
Cai, Huili, Liu, Xiaofeng, Cangelosi, Angelo.  2019.  Security of Cloud Intelligent Robot Based on RSA Algorithm and Digital Signature. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1453–1456.
Considering the security of message exchange between service robot and cloud, we propose to authenticate the message integrity based on RSA algorithm and digital signature. In the process of message transmission, RSA algorithm is used to encrypt message for service robot and decrypt message for cloud. The digital signature algorithm is used to authenticate the source of the message. The results of experiment have proved that the proposed scheme can guarantee the security of message transmission.
2020-06-01
Pallavi, K.N., Kumar V., Ravi, Kulal, Pooja.  2018.  Study of security algorithms to secure IOT data in middleware. 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT). :305–308.
In the present generation internet plays a major role. The data being sent by the user is created by the things like pc, mobiles, sensors etc. and these data are sent to the cloud system. When a data from the IOT devices are sent to the cloud, there is a question of privacy and security. To provide security for the data well-known security algorithms are used in fog layer and are successful in transferring the data without any damage. Here different techniques used for providing security for IOT data are discussed.
2020-04-24
Zhang, Lichen.  2018.  Modeling Cloud Based Cyber Physical Systems Based on AADL. 2018 24th International Conference on Automation and Computing (ICAC). :1—6.

Cloud-based cyber-physical systems, like vehicle and intelligent transportation systems, are now attracting much more attentions. These systems usually include large-scale distributed sensor networks covering various components and producing enormous measurement data. Lots of modeling languages are put to use for describing cyber-physical systems or its aspects, bringing contribution to the development of cyber-physical systems. But most of the modeling techniques only focuse on software aspect so that they could not exactly express the whole cloud-based cyber-physical systems, which require appropriate views and tools in its design; but those tools are hard to be used under systemic or object-oriented methods. For example, the widest used modeling language, UML, could not fulfil the above design's requirements by using the foremer's standard form. This paper presents a method designing the cloud-based cyber-physical systems with AADL, by which we can analyse, model and apply those requirements on cloud platforms ensuring QoS in a relatively highly extensible way at the mean time.

2020-04-17
Park, Y.S., Choi, C.S., Jang, C., Shin, D.G., Cho, G.C., Kim, Hwa Soo.  2019.  Development of Incident Response Tool for Cyber Security Training Based on Virtualization and Cloud. 2019 International Workshop on Big Data and Information Security (IWBIS). :115—118.

We developed a virtualization-based infringement incident response tool for cyber security training system using Cloud. This tool was developed by applying the concept of attack and defense which is the basic of military war game modeling and simulation. The main purpose of this software is to cultivate cyber security experts capable of coping with various situations to minimize the damage in the shortest time when an infringement incident occurred. This tool acquired the invaluable certificate from Korean government agency. This tool shall provide CBT type remote education such as scenario based infringement incident response training, hacking defense practice, and vulnerability measure practice. The tool works in Linux, Window operating system environments, and uses Korean e-government framework and secure coding to construct a situation similar to the actual information system. In the near future, Internet and devices connected to the Internet will be greatly enlarged, and cyber security threats will be diverse and widespread. It is expected that various kinds of hacking will be attempted in an advanced types using artificial intelligence technology. Therefore, we are working on applying the artificial intelligence technology to the current infringement incident response tool to cope with these evolving threats.

Liu, Sihang, Wei, Yizhou, Chi, Jianfeng, Shezan, Faysal Hossain, Tian, Yuan.  2019.  Side Channel Attacks in Computation Offloading Systems with GPU Virtualization. 2019 IEEE Security and Privacy Workshops (SPW). :156—161.

The Internet of Things (IoT) and mobile systems nowadays are required to perform more intensive computation, such as facial detection, image recognition and even remote gaming, etc. Due to the limited computation performance and power budget, it is sometimes impossible to perform these workloads locally. As high-performance GPUs become more common in the cloud, offloading the computation to the cloud becomes a possible choice. However, due to the fact that offloaded workloads from different devices (belonging to different users) are being computed in the same cloud, security concerns arise. Side channel attacks on GPU systems have been widely studied, where the threat model is the attacker and the victim are running on the same operating system. Recently, major GPU vendors have provided hardware and library support to virtualize GPUs for better isolation among users. This work studies the side channel attacks from one virtual machine to another where both share the same physical GPU. We show that it is possible to infer other user's activities in this setup and can further steal others deep learning model.

2020-03-30
Narendra, Nanjangud C., Shukla, Anshu, Nayak, Sambit, Jagadish, Asha, Kalkur, Rachana.  2019.  Genoma: Distributed Provenance as a Service for IoT-based Systems. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :755–760.
One of the key aspects of IoT-based systems, which we believe has not been getting the attention it deserves, is provenance. Provenance refers to those actions that record the usage of data in the system, along with the rationale for said usage. Historically, most provenance methods in distributed systems have been tightly coupled with those of the underlying data processing frameworks in such systems. However, in this paper, we argue that IoT provenance requires a different treatment, given the heterogeneity and dynamism of IoT-based systems. In particular, provenance in IoT-based systems should be decoupled as far as possible from the underlying data processing substrates in IoT-based systems.To that end, in this paper, we present Genoma, our ongoing work on a system for provenance-as-a-service in IoT-based systems. By "provenance-as-a-service" we mean the following: distributed provenance across IoT devices, edge and cloud; and agnostic of the underlying data processing substrate. Genoma comprises a set of services that act together to provide useful provenance information to users across the system. We also show how we are realizing Genoma via an implementation prototype built on Apache Atlas and Tinkergraph, through which we are investigating several key research issues in distributed IoT provenance.
2020-03-18
Uthayashangar, S., Dhamini, P., Mahalakshmi, M., Mangayarkarasi, V..  2019.  Efficient Group Data Sharing In Cloud Environment Using Honey Encryption. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–3.
Cloud computing is a rapid growing advanced technology which is Internet based, providing various ways for storage, resource sharing, and various features. It has brought a new way to securely store and share information and data with multiple users and groups. The cloud environment deals with many problems, and one of the most important problems in recent days is the security issues. Sharing the data in a group, in cloud conditions has turned into a blazing theme in up and coming decades. Thus the blasting interest in cloud computing, ways and measures to accomplish secure and effective information and data sharing in the cloud is a flourishing point to be engaged. In this way, the venture centers around empowering information sharing and capacity for a similar gathering inside the cloud with high security and intensity. Therefore, Honey Encryption and Advanced Encryption Standard is used for providing security for the data shared within the group by the crew members in cloud environment. In addition, an access key is provided by the Group Manager to enable access to the documents and files stored in cloud by the users for specific time period.
Shah, Meet D., Mohanty, Manoranjan, Atrey, Pradeep K..  2019.  SecureCSearch: Secure Searching in PDF Over Untrusted Cloud Servers. 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). :347–352.
The usage of cloud for data storage has become ubiquitous. To prevent data leakage and hacks, it is common to encrypt the data (e.g. PDF files) before sending it to a cloud. However, this limits the search for specific files containing certain keywords over an encrypted cloud data. The traditional method is to take down all files from a cloud, store them locally, decrypt and then search over them, defeating the purpose of using a cloud. In this paper, we propose a method, called SecureCSearch, to perform keyword search operations on the encrypted PDF files over cloud in an efficient manner. The proposed method makes use of Shamir's Secret Sharing scheme in a novel way to create encrypted shares of the PDF file and the keyword to search. We show that the proposed method maintains the security of the data and incurs minimal computation cost.
2020-03-09
Chhillar, Dheeraj, Sharma, Kalpana.  2019.  ACT Testbot and 4S Quality Metrics in XAAS Framework. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :503–509.

The purpose of this paper is to analyze all Cloud based Service Models, Continuous Integration, Deployment and Delivery process and propose an Automated Continuous Testing and testing as a service based TestBot and metrics dashboard which will be integrated with all existing automation, bug logging, build management, configuration and test management tools. Recently cloud is being used by organizations to save time, money and efforts required to setup and maintain infrastructure and platform. Continuous Integration and Delivery is in practice nowadays within Agile methodology to give capability of multiple software releases on daily basis and ensuring all the development, test and Production environments could be synched up quickly. In such an agile environment there is need to ramp up testing tools and processes so that overall regression testing including functional, performance and security testing could be done along with build deployments at real time. To support this phenomenon, we researched on Continuous Testing and worked with industry professionals who are involved in architecting, developing and testing the software products. A lot of research has been done towards automating software testing so that testing of software product could be done quickly and overall testing process could be optimized. As part of this paper we have proposed ACT TestBot tool, metrics dashboard and coined 4S quality metrics term to quantify quality of the software product. ACT testbot and metrics dashboard will be integrated with Continuous Integration tools, Bug reporting tools, test management tools and Data Analytics tools to trigger automation scripts, continuously analyze application logs, open defects automatically and generate metrics reports. Defect pattern report will be created to support root cause analysis and to take preventive action.

2020-02-24
Snyder, Bradley Lee, Jones, James H..  2019.  Determining the Effectiveness of Data Remanence Prevention in the AWS Cloud. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Previous efforts to detect cross-instance cloud remanence have consisted of searching current instance unallocated space for fragments easily attributable to a prior user or instance, and results were necessarily dependent on the specific instances tested and the search terms employed by the investigator. In contrast, this work developed, tested, and applied a general method to detect potential cross-instance cloud remanence that does not depend on specific instances or search terms. This method collects unallocated space from multiple cloud virtual machine instances based on the same cloud provider template. Empty sectors and sectors which also appear in the allocated space of that instance are removed from the candidate remanence list, and the remaining sectors are compared to sectors from instances based on other templates from that same provider; a matching sector indicate potential cross-instance remanence. Matching sectors are further evaluated by considering contiguous sectors and mapping back to the source file from the other instance template, providing additional evidence that the recovered fragments may in fact be content from another instance. This work first found that unallocated space from multiple cloud instances based on the same template is not empty, random, nor identical - in itself an indicator of possible cross-instance remanence. This work also found sectors in unallocated space of multiple instances that matched contiguous portions of files from instances created from other templates, providing a focused area for determining whether cross-instance data remanence exists. This work contributes a general method to indicate potential cross-instance cloud data remanence which is not dependent on a specific provider or infrastructure, instance details, or the presence of specific user-attributable remnant fragments. A tool to implement the method was developed, validated, and then run on Amazon's AWS cloud service.
2020-02-10
Nikolov, Neven, Nakov, Ognyan.  2019.  Research of Secure Communication of Esp32 IoT Embedded System to.NET Core Cloud Structure Using MQTTS SSL/TLS. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). :1–4.

This paper studies and describes encrypted communication between IoT cloud and IoT embedded systems. It uses encrypted MQTTS protocol with SSL/TLS certificate. A JSON type data format is used between the cloud structure and the IoT device. The embedded system used in this experiment is Esp32 Wrover. The IoT embedded system measures temperature and humidity from a sensor DHT22. The architecture and software implementation of the experimental stage are also presented.

2020-01-27
Akinrolabu, Olusola, New, Steve, Martin, Andrew.  2019.  Assessing the Security Risks of Multicloud SaaS Applications: A Real-World Case Study. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :81–88.

Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.

2020-01-07
Sakr, Ahmed S., El–kafrawy, P M., Abdullkader, Hatem M., Ibrahem, Hani M..  2018.  An Efficient Framework for Big Data Security Based on Selection Encryption on Amazonec2. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1-5.

With the wide use of smart device made huge amount of information arise. This information needed new methods to deal with it from that perspective big data concept arise. Most of the concerns on big data are given to handle data without concentrating on its security. Encryption is the best use to keep data safe from malicious users. However, ordinary encryption methods are not suitable for big data. Selective encryption is an encryption method that encrypts only the important part of the message. However, we deal with uncertainty to evaluate the important part of the message. The problem arises when the important part is not encrypted. This is the motivation of the paper. In this paper we propose security framework to secure important and unimportant portion of the message to overcome the uncertainty. However, each will take a different encryption technique for better performance without losing security. The framework selects the important parts of the message to be encrypted with a strong algorithm and the weak part with a medium algorithm. The important of the word is defined according to how its origin frequently appears. This framework is applied on amazon EC2 (elastic compute cloud). A comparison between the proposed framework, the full encryption method and Toss-A-Coin method are performed according to encryption time and throughput. The results showed that the proposed method gives better performance according to encryption time, throughput than full encryption.

2019-12-30
Loyka, Kyle, Zhou, He, Khatri, Sunil P..  2018.  A Homomorphic Encryption Scheme Based on Affine Transforms. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :51–56.
As more businesses and consumers move their information storage to the cloud, the need to protect sensitive data is higher than ever. Using encryption, data access can be restricted to only authorized users. However, with standard encryption schemes, modifying an encrypted file in the cloud requires a complete file download, decryption, modification, and upload. This is cumbersome and time-consuming. Recently, the concept of homomorphic computing has been proposed as a solution to this problem. Using homomorphic computation, operations may be performed directly on encrypted files without decryption, hence avoiding exposure of any sensitive user information in the cloud. This also conserves bandwidth and reduces processing time. In this paper, we present a homomorphic computation scheme that utilizes the affine cipher applied to the ASCII representation of data. To the best of the authors» knowledge, this is the first use of affine ciphers in homomorphic computing. Our scheme supports both string operations (encrypted string search and concatenation), as well as arithmetic operations (encrypted integer addition and subtraction). A design goal of our proposed homomorphism is that string data and integer data are treated identically, in order to enhance security.
2019-12-16
Wang, Kuang-Ching, Brooks, Richard R., Barrineau, Geddings, Oakley, Jonathan, Yu, Lu, Wang, Qing.  2018.  Internet Security Liberated via Software Defined Exchanges. Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :19–22.
With software defined networking and network function virtualization technologies, networks can be programmed to have customized processing and paths for different traffic at manageable costs and for massive numbers of applications. Now, picture a future Internet where each entity - a person, an organization, or an autonomous system - has the ability to choose how traffic in their respective network sessions is routed and processed between itself and its counterparts. The network is, essentially, liberated from today's homogeneous IP-based routing and limited connection options. To realize such a network paradigm, we propose a software defined exchange architecture that can provide the needed network programmability, session-level customization, and scale. We present a case study for traffic-analysis-resistant communication among individuals, campuses, or web services, where IP addresses no longer need to have a one-to-one correspondence with service providers.