Biblio
With the increased popularity of ubiquitous computing and connectivity, the Internet of Things (IoT) also introduces new vulnerabilities and attack vectors. While secure data collection (i.e. the upward link) has been well studied in the literature, secure data dissemination (i.e. the downward link) remains an open problem. Attribute-based encryption (ABE) and outsourced-ABE has been used for secure message distribution in IoT, however, existing mechanisms suffer from extensive computation and/or privacy issues. In this paper, we explore the problem of privacy-preserving targeted broadcast in IoT. We propose two multi-cloud-based outsourced-ABE schemes, namely the parallel-cloud ABE and the chain-cloud ABE, which enable the receivers to partially outsource the computationally expensive decryption operations to the clouds, while preventing user attributes from being disclosed. In particular, the proposed solution protects three types of privacy (i.e., data, attribute and access policy privacy) by enforcing collaborations among multiple clouds. Our schemes also provide delegation verifiability that allows the receivers to verify whether the clouds have faithfully performed the outsourced operations. We extensively analyze the security guarantees of the proposed mechanisms and demonstrate the effectiveness and efficiency of our schemes with simulated resource-constrained IoT devices, which outsource operations to Amazon EC2 and Microsoft Azure.
For single-owner multi-user wireless sensor networks, there is the demand to implement the user privacy-preserving access control protocol in WSNs. Firstly, we propose a new access control protocol based on an efficient attribute-based signature. In the protocol, users need to pay for query, and the protocol achieves fine-grained access control and privacy protection. Then, the protocol is analyzed in detail. Finally, the comparison of protocols indicates that our scheme is more efficient. Our scheme not only protects the privacy of users and achieves fine-grained access control, but also provides the query command validation with low overhead. The scheme can better satisfy the access control requirements of wireless sensor networks.
Outsourcing a huge amount of local data to remote cloud servers that has been become a significant trend for industries. Leveraging the considerable cloud storage space, industries can also put forward the outsourced data to cloud computing. How to collect the data for computing without loss of privacy and confidentiality is one of the crucial security problems. Searchable encryption technique has been proposed to protect the confidentiality of the outsourced data and the privacy of the corresponding data query. This technique, however, only supporting search functionality, may not be fully applicable to real-world cloud computing scenario whereby secure data search, share as well as computation are needed. This work presents a novel encrypted cloud-based data share and search system without loss of user privacy and data confidentiality. The new system enables users to make conjunctive keyword query over encrypted data, but also allows encrypted data to be efficiently and multiply shared among different users without the need of the "download-decrypt-then-encrypt" mode. As of independent interest, our system provides secure keyword update, so that users can freely and securely update data's keyword field. It is worth mentioning that all the above functionalities do not incur any expansion of ciphertext size, namely, the size of ciphertext remains constant during being searched, shared and keyword-updated. The system is proven secure and meanwhile, the efficiency analysis shows its great potential in being used in large-scale database.
In the area of the Internet of Things, cloud-based camera surveillance systems are ubiquitously available for industrial and private environments. However, the sensitive nature of the surveillance use case imposes high requirements on privacy/confidentiality, authenticity, and availability of such systems. In this work, we investigate how currently available mass-market camera systems comply with these requirements. Considering two attacker models, we test the cameras for weaknesses and analyze for their implications. We reverse-engineered the security implementation and discovered several vulnerabilities in every tested system. These weaknesses impair the users' privacy and, as a consequence, may also damage the camera system manufacturer's reputation. We demonstrate how an attacker can exploit these vulnerabilities to blackmail users and companies by denial-of-service attacks, injecting forged video streams, and by eavesdropping private video data - even without physical access to the device. Our analysis shows that current systems lack in practice the necessary care when implementing security for IoT devices.
Computing similarity, especially Jaccard Similarity, between two datasets is a fundamental building block in big data analytics, and extensive applications including genome matching, plagiarism detection, social networking, etc. The increasing user privacy concerns over the release of has sensitive data have made it desirable and necessary for two users to evaluate Jaccard Similarity over their datasets in a privacy-preserving manner. In this paper, we propose two efficient and secure protocols to compute the Jaccard Similarity of two users' private sets with the help of an unfully-trusted server. Specifically, in order to boost the efficiency, we leverage Minhashing algorithm on encrypted data, where the output of our protocols is guaranteed to be a close approximation of the exact value. In both protocols, only an approximate similarity result is leaked to the server and users. The first protocol is secure against a semi-honest server, while the second protocol, with a novel consistency-check mechanism, further achieves result verifiability against a malicious server who cheats in the executions. Experimental results show that our first protocol computes an approximate Jaccard Similarity of two billion-element sets within only 6 minutes (under 256-bit security in parallel mode). To the best of our knowledge, our consistency-check mechanism represents the very first work to realize an efficient verification particularly on approximate similarity computation.
Unease over data privacy will retard consumer acceptance of IoT deployments. The primary source of discomfort is a lack of user control over raw data that is streamed directly from sensors to the cloud. This is a direct consequence of the over-centralization of today's cloud-based IoT hub designs. We propose a solution that interposes a locally-controlled software component called a privacy mediator on every raw sensor stream. Each mediator is in the same administrative domain as the sensors whose data is being collected, and dynamically enforces the current privacy policies of the owners of the sensors or mobile users within the domain. This solution necessitates a logical point of presence for mediators within the administrative boundaries of each organization. Such points of presence are provided by cloudlets, which are small locally-administered data centers at the edge of the Internet that can support code mobility. The use of cloudlet-based mediators aligns well with natural personal and organizational boundaries of trust and responsibility.
With the increasing popularity of cloud storage services, many individuals and enterprises start to move their local data to the clouds. To ensure their privacy and data security, some cloud service users may want to encrypt their data before outsourcing them. However, this impedes efficient data utilities based on the plain text search. In this paper, we study how to construct a secure index that supports both efficient index updating and similarity search. Using the secure index, users are able to efficiently perform similarity searches tolerating input mistakes and update the index when new data are available. We formally prove the security of our proposal and also perform experiments on real world data to show its efficiency.
The wide presence of large graph data and the increasing popularity of storing data in the cloud drive the needs for graph query processing on a remote cloud. But a fundamental challenge is to process user queries without compromising sensitive information. This work focuses on privacy preserving subgraph matching in a cloud server. The goal is to minimize the overhead on both cloud and client sides for subgraph matching, without compromising users' sensitive information. To that end, we transform an original graph \$G\$ into a privacy preserving graph Gk, which meets the requirement of an existing privacy model known as k-automorphism. By making use of the symmetry in a k-automorphic graph, a subgraph matching query can be efficiently answered using a graph Go, a small subset of Gk. This approach saves both space and query cost in the cloud server. We also anonymize the query graphs to protect their label information using label generalization technique. To reduce the search space for a subgraph matching query, we propose a cost model to select the more effective label combinations. The effectiveness and efficiency of our method are demonstrated through extensive experimental results on real datasets.
Abundant multimedia data generated in our daily life has intrigued a variety of very important and useful real-world applications such as object detection and recognition etc. Accompany with these applications, many popular feature descriptors have been developed, e.g., SIFT, SURF and HOG. Manipulating massive multimedia data locally, however, is a storage and computation intensive task, especially for resource-constrained clients. In this work, we focus on exploring how to securely outsource the famous feature extraction algorithm–Histogram of Oriented Gradients (HOG) to untrusted cloud servers, without revealing the data owner's private information. For the first time, we investigate this secure outsourcing computation problem under two different models and accordingly propose two novel privacy-preserving HOG outsourcing protocols, by efficiently encrypting image data by somewhat homomorphic encryption (SHE) integrated with single-instruction multiple-data (SIMD), designing a new batched secure comparison protocol, and carefully redesigning every step of HOG to adapt it to the ciphertext domain. Explicit Security and effectiveness analysis are presented to show that our protocols are practically-secure and can approximate well the performance of the original HOG executed in the plaintext domain. Our extensive experimental evaluations further demonstrate that our solutions achieve high efficiency and perform comparably to the original HOG when being applied to human detection.
Mobile devices, such as smarthphones, became a common tool in our daily routine. Mobile Applications (a.k.a. apps) are demanding access to contextual information increasingly. For instance, apps require user's environment data as well as their profiles in order to adapt themselves (interfaces, services, content) according to this context data. Mobile apps with this behavior are known as context-aware applications (CAS). Several software infrastructures have been created to help the development of CAS. However, most of them do not store the contextual data, once mobile devices are resource constrained. They are not built taking into account the privacy of contextual data either, due the fact that apps may expose contextual data, without user consent. This paper addresses these topics by extending an existing middleware platform that help the development of mobile context-aware applications. Our extension aims at store and process the contextual data generated from several mobile devices, using the computational power of the cloud, and the definition of privacy policies, which avoid dissemination of unauthorized contextual data.
The Internet of Things (IoT) offers new opportunities, but alongside those come many challenges for security and privacy. Most IoT devices offer no choice to users of where data is published, which data is made available and what identities are used for both devices and users. The aim of this work is to explore new middleware models and techniques that can provide users with more choice as well as enhance privacy and security. This paper outlines a new model and a prototype of a middleware system that implements this model.
We present a novel Cyber Security analytics framework. We demonstrate a comprehensive cyber security monitoring system to construct cyber security correlated events with feature selection to anticipate behaviour based on various sensors.
While cloud computing has become an attractive platform for supporting data intensive applications, a major obstacle to the adoption of cloud computing in sectors such as health and defense is the privacy risk associated with releasing datasets to third-parties in the cloud for analysis. A widely-adopted technique for data privacy preservation is to anonymize data via local recoding. However, most existing local-recoding techniques are either serial or distributed without directly optimizing scalability, thus rendering them unsuitable for big data applications. In this paper, we propose a highly scalable approach to local-recoding anonymization in cloud computing, based on Locality Sensitive Hashing (LSH). Specifically, a novel semantic distance metric is presented for use with LSH to measure the similarity between two data records. Then, LSH with the MinHash function family can be employed to divide datasets into multiple partitions for use with MapReduce to parallelize computation while preserving similarity. By using our efficient LSH-based scheme, we can anonymize each partition through the use of a recursive agglomerative \$k\$-member clustering algorithm. Extensive experiments on real-life datasets show that our approach significantly improves the scalability and time-efficiency of local-recoding anonymization by orders of magnitude over existing approaches.
In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.
Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.
Cloud technologies are increasingly important for IT department for allowing them to concentrate on strategy as opposed to maintaining data centers; the biggest advantages of the cloud is the ability to share computing resources between multiple providers, especially hybrid clouds, in overcoming infrastructure limitations. User identity federation is considered as the second major risk in the cloud, and since business organizations use multiple cloud service providers, IT department faces a range of constraints. Multiple attempts to solve this problem have been suggested like federated Identity, which has a number of advantages, despite it suffering from challenges that are common in new technologies. The following paper tackles federated identity, its components, advantages, disadvantages, and then proposes a number of useful scenarios to manage identity in hybrid clouds infrastructure.
Cloud computing is one of the emerging computing technology where costs are directly proportional to usage and demand. The advantages of this technology are the reasons of security and privacy problems. The data belongs to the users are stored in some cloud servers which is not under their own control. So the cloud services are required to authenticate the user. In general, most of the cloud authentication algorithms do not provide anonymity of the users. The cloud provider can track the users easily. The privacy and authenticity are two critical issues of cloud security. In this paper, we propose a secure anonymous authentication method for cloud services using identity based group signature which allows the cloud users to prove that they have privilege to access the data without revealing their identities.
Cloud computing has become an attractive paradigm for many organizations in government, industry as well as academia. In academia, the cloud can offer instructors and students (whether local or at a distance) on-demand, dedicated, isolated, unlimited, and easily configurable machines. Such an approach has clear advantages over access to machines in a classic lab setting. In this paper, we show how cloud services and infrastructure could be harnessed to facilitate practical experience and training for cybersecurity. We used the popular Amazon Web Services (AWS) cloud; however, the use cases and approaches laid out in this paper are also applicable to other cloud providers.
We introduce a cloud-enabled defense mechanism for Internet services against network and computational Distributed Denial-of-Service (DDoS) attacks. Our approach performs selective server replication and intelligent client re-assignment, turning victim servers into moving targets for attack isolation. We introduce a novel system architecture that leverages a "shuffling" mechanism to compute the optimal re-assignment strategy for clients on attacked servers, effectively separating benign clients from even sophisticated adversaries that persistently follow the moving targets. We introduce a family of algorithms to optimize the runtime client-to-server re-assignment plans and minimize the number of shuffles to achieve attack mitigation. The proposed shuffling-based moving target mechanism enables effective attack containment using fewer resources than attack dilution strategies using pure server expansion. Our simulations and proof-of-concept prototype using Amazon EC2 [1] demonstrate that we can successfully mitigate large-scale DDoS attacks in a small number of shuffles, each of which incurs a few seconds of user-perceived latency.
Traffic from mobile wireless networks has been growing at a fast pace in recent years and is expected to surpass wired traffic very soon. Service providers face significant challenges at such scales including providing seamless mobility, efficient data delivery, security, and provisioning capacity at the wireless edge. In the Mobility First project, we have been exploring clean slate enhancements to the network protocols that can inherently provide support for at-scale mobility and trustworthiness in the Internet. An extensible data plane using pluggable compute-layer services is a key component of this architecture. We believe these extensions can be used to implement in-network services to enhance mobile end-user experience by either off-loading work and/or traffic from mobile devices, or by enabling en-route service-adaptation through context-awareness (e.g., Knowing contemporary access bandwidth). In this work we present details of the architectural support for in-network services within Mobility First, and propose protocol and service-API extensions to flexibly address these pluggable services from end-points. As a demonstrative example, we implement an in network service that does rate adaptation when delivering video streams to mobile devices that experience variable connection quality. We present details of our deployment and evaluation of the non-IP protocols along with compute-layer extensions on the GENI test bed, where we used a set of programmable nodes across 7 distributed sites to configure a Mobility First network with hosts, routers, and in-network compute services.
Due to the high volume and velocity of big data, it is an effective option to store big data in the cloud, because the cloud has capabilities of storing big data and processing high volume of user access requests. Attribute-Based Encryption (ABE) is a promising technique to ensure the end-to-end security of big data in the cloud. However, the policy updating has always been a challenging issue when ABE is used to construct access control schemes. A trivial implementation is to let data owners retrieve the data and re-encrypt it under the new access policy, and then send it back to the cloud. This method incurs a high communication overhead and heavy computation burden on data owners. In this paper, we propose a novel scheme that enabling efficient access control with dynamic policy updating for big data in the cloud. We focus on developing an outsourced policy updating method for ABE systems. Our method can avoid the transmission of encrypted data and minimize the computation work of data owners, by making use of the previously encrypted data with old access policies. Moreover, we also design policy updating algorithms for different types of access policies. The analysis show that our scheme is correct, complete, secure and efficient.
Cloud computing technologies are receiving a great deal of attention. Furthermore most of the hardware devices such as the PCs and mobile phones are increasingly having a trusted component called Trusted Platform Module embedded in them, which helps to measure the state of the platform and hence reason about its trust. Recently attestation techniques such as binary attestation and property based attestation techniques have been proposed based on the TPM. In this paper, we propose a novel trust enhanced security model for cloud services that helps to detect and prevent security attacks in cloud infrastructures using trusted attestation techniques. We consider a cloud architecture where different services are hosted on virtualized systems on the cloud by multiple cloud customers (multi-tenants). We consider attacker model and various attack scenarios for such hosted services in the cloud. Our trust enhanced security model enables the cloud service provider to certify certain security properties of the tenant virtual machines and services running on them. These properties are then used to detect and minimise attacks between the cloud tenants running virtual machines on the infrastructure and its customers as well as increase the assurance of the tenant virtual machine transactions. If there is a variation in the behaviour of the tenant virtual machine from the certified properties, the model allows us to dynamically isolate the tenant virtual machine or even terminate the malicious services on a fine granular basis. The paper describes the design and implementation of the proposed model and discusses how it deals with the different attack scenarios. We also show that our model is beneficial for the cloud service providers, cloud customers running tenant virtual machines as well as the customers using the services provided by these tenant virtual machines.
Using one password for all web services is not secure because the leakage of the password compromises all the web services accounts, while using independent passwords for different web services is inconvenient for the identity claimant to memorize. A password manager is used to address this security-convenience dilemma by storing and retrieving multiple existing passwords using one master password. On the other hand, a password manager liberates human brain by enabling people to generate strong passwords without worry about memorizing them. While a password manager provides a convenient and secure way to managing multiple passwords, it centralizes the passwords storage and shifts the risk of passwords leakage from distributed service providers to a software or token authenticated by a single master password. Concerned about this one master password based security, biometrics could be used as a second factor for authentication by verifying the ownership of the master password. However, biometrics based authentication is more privacy concerned than a non-biometric password manager. In this paper we propose a cloud password manager scheme exploiting privacy enhanced biometrics, which achieves both security and convenience in a privacy-enhanced way. The proposed password manager scheme relies on a cloud service to synchronize all local password manager clients in an encrypted form, which is efficient to deploy the updates and secure against untrusted cloud service providers.
We propose a novel phishing detection architecture based on transparent virtualization technologies and isolation of the own components. The architecture can be deployed as a security extension for virtual machines (VMs) running in the cloud. It uses fine-grained VM introspection (VMI) to extract, filter and scale a color-based fingerprint of web pages which are processed by a browser from the VM's memory. By analyzing the human perceptual similarity between the fingerprints, the architecture can reveal and mitigate phishing attacks which are based on redirection to spoofed web pages and it can also detect “Man-in-the-Browser” (MitB) attacks. To the best of our knowledge, the architecture is the first anti-phishing solution leveraging virtualization technologies. We explain details about the design and the implementation and we show results of an evaluation with real-world data.
Cloud computing has emerged as an increasingly popular means of delivering IT-enabled business services and a potential technology resource choice for many private and government organizations in today's rapidly changing computing environment. Consequently, as cloud computing technology, functionality and usability expands unique security vulnerabilities and treats requiring timely attention arise continuously. The primary challenge being providing continuous service availability. This paper will address cloud security vulnerability issues, the threats propagated by a distributed denial of service (DDOS) attack on cloud computing infrastructure and also discuss the means and techniques that could detect and prevent the attacks.