Visible to the public Biblio

Filters: Keyword is Computational Intelligence  [Clear All Filters]
2019-12-09
Nozaki, Yusuke, Yoshikawa, Masaya.  2018.  Area Constraint Aware Physical Unclonable Function for Intelligence Module. 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). :205-209.

Artificial intelligence technology such as neural network (NN) is widely used in intelligence module for Internet of Things (IoT). On the other hand, the risk of illegal attacks for IoT devices is pointed out; therefore, security countermeasures such as an authentication are very important. In the field of hardware security, the physical unclonable functions (PUFs) have been attracted attention as authentication techniques to prevent the semiconductor counterfeits. However, implementation of the dedicated hardware for both of NN and PUF increases circuit area. Therefore, this study proposes a new area constraint aware PUF for intelligence module. The proposed PUF utilizes the propagation delay time from input layer to output layer of NN. To share component for operation, the proposed PUF reduces the circuit area. Experiments using a field programmable gate array evaluate circuit area and PUF performance. In the result of circuit area, the proposed PUF was smaller than the conventional PUFs was showed. Then, in the PUF performance evaluation, for steadiness, diffuseness, and uniqueness, favorable results were obtained.

Khokhlov, Igor, Jain, Chinmay, Miller-Jacobson, Ben, Heyman, Andrew, Reznik, Leonid, Jacques, Robert St..  2018.  MeetCI: A Computational Intelligence Software Design Automation Framework. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

Computational Intelligence (CI) algorithms/techniques are packaged in a variety of disparate frameworks/applications that all vary with respect to specific supported functionality and implementation decisions that drastically change performance. Developers looking to employ different CI techniques are faced with a series of trade-offs in selecting the appropriate library/framework. These include resource consumption, features, portability, interface complexity, ease of parallelization, etc. Considerations such as language compatibility and familiarity with a particular library make the choice of libraries even more difficult. The paper introduces MeetCI, an open source software framework for computational intelligence software design automation that facilitates the application design decisions and their software implementation process. MeetCI abstracts away specific framework details of CI techniques designed within a variety of libraries. This allows CI users to benefit from a variety of current frameworks without investigating the nuances of each library/framework. Using an XML file, developed in accordance with the specifications, the user can design a CI application generically, and utilize various CI software without having to redesign their entire technology stack. Switching between libraries in MeetCI is trivial and accessing the right library to satisfy a user's goals can be done easily and effectively. The paper discusses the framework's use in design of various applications. The design process is illustrated with four different examples from expert systems and machine learning domains, including the development of an expert system for security evaluation, two classification problems and a prediction problem with recurrent neural networks.

Tsochev, Georgi, Trifonov, Roumen, Yoshinov, Radoslav, Manolov, Slavcho, Pavlova, Galya.  2019.  Improving the Efficiency of IDPS by Using Hybrid Methods from Artificial Intelligence. 2019 International Conference on Information Technologies (InfoTech). :1-4.

The present paper describes some of the results obtained in the Faculty of Computer Systems and Technology at Technical University of Sofia in the implementation of project related to the application of intelligent methods for increasing the security in computer networks. Also is made a survey about existing hybrid methods, which are using several artificial intelligent methods for cyber defense. The paper introduces a model for intrusion detection systems where multi agent systems are the bases and artificial intelligence are applicable by the means simple real-time models constructed in laboratory environment.

Cococcioni, Marco.  2018.  Computational Intelligence in Maritime Security and Defense: Challenges and Opportunities. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1964-1967.

Computational Intelligence (CI) has a great potential in Security & Defense (S&D) applications. Nevertheless, such potential seems to be still under exploited. In this work we first review CI applications in the maritime domain, done in the past decades by NATO Nations. Then we discuss challenges and opportunities for CI in S&D. Finally we argue that a review of the academic training of military officers is highly recommendable, in order to allow them to understand, model and solve new problems, using CI techniques.

2019-08-12
Ma, C., Yang, X., Wang, H..  2018.  Randomized Online CP Decomposition. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). :414-419.

CANDECOMP/PARAFAC (CP) decomposition has been widely used to deal with multi-way data. For real-time or large-scale tensors, based on the ideas of randomized-sampling CP decomposition algorithm and online CP decomposition algorithm, a novel CP decomposition algorithm called randomized online CP decomposition (ROCP) is proposed in this paper. The proposed algorithm can avoid forming full Khatri-Rao product, which leads to boost the speed largely and reduce memory usage. The experimental results on synthetic data and real-world data show the ROCP algorithm is able to cope with CP decomposition for large-scale tensors with arbitrary number of dimensions. In addition, ROCP can reduce the computing time and memory usage dramatically, especially for large-scale tensors.

2019-08-05
Graves, Catherine E., Ma, Wen, Sheng, Xia, Buchanan, Brent, Zheng, Le, Lam, Si-Ty, Li, Xuema, Chalamalasetti, Sai Rahul, Kiyama, Lennie, Foltin, Martin et al..  2018.  Regular Expression Matching with Memristor TCAMs for Network Security. Proceedings of the 14th IEEE/ACM International Symposium on Nanoscale Architectures. :65–71.

We propose using memristor-based TCAMs (Ternary Content Addressable Memory) to accelerate Regular Expression (RegEx) matching. RegEx matching is a key function in network security, where deep packet inspection finds and filters out malicious actors. However, RegEx matching latency and power can be incredibly high and current proposals are challenged to perform wire-speed matching for large scale rulesets. Our approach dramatically decreases RegEx matching operating power, provides high throughput, and the use of mTCAMs enables novel compression techniques to expand ruleset sizes and allows future exploitation of the multi-state (analog) capabilities of memristors. We fabricated and demonstrated nanoscale memristor TCAM cells. SPICE simulations investigate mTCAM performance at scale and a mTCAM power model at 22nm demonstrates 0.2 fJ/bit/search energy for a 36x400 mTCAM. We further propose a tiled architecture which implements a Snort ruleset and assess the application performance. Compared to a state-of-the-art FPGA approach (2 Gbps,\textbackslashtextasciitilde1W), we show x4 throughput (8 Gbps) at 60% the power (0.62W) before applying standard TCAM power-saving techniques. Our performance comparison improves further when striding (searching multiple characters) is considered, resulting in 47.2 Gbps at 1.3W for our approach compared to 3.9 Gbps at 630mW for the strided FPGA NFA, demonstrating a promising path to wire-speed RegEx matching on large scale rulesets.

2019-03-18
Chen, L., Liu, J., Ha, W..  2018.  Cloud Service Risk in the Smart Grid. 2018 14th International Conference on Computational Intelligence and Security (CIS). :242–244.

Smart grid utilizes cloud service to realize reliable, efficient, secured, and cost-effective power management, but there are a number of security risks in the cloud service of smart grid. The security risks are particularly problematic to operators of power information infrastructure who want to leverage the benefits of cloud. In this paper, security risk of cloud service in the smart grid are categorized and analyzed characteristics, and multi-layered index system of general technical risks is established, which applies to different patterns of cloud service. Cloud service risk of smart grid can evaluate according indexes.

2019-02-21
Xie, S., Wang, G..  2018.  Optimization of parallel turnings using particle swarm intelligence. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). :230–234.
Machining process parameters optimization is of concern in machining fields considering machining cost factor. In order to solve the optimization problem of machining process parameters in parallel turning operations, which aims to reduce the machining cost, two PSO-based optimization approaches are proposed in this paper. According to the divide-and-conquer idea, the problem is divided into some similar sub-problems. A particle swarm optimization then is derived to conquer each sub-problem to find the optimal results. Simulations show that, comparing to other optimization approaches proposed previously, the proposed two PSO-based approaches can get optimal machining parameters to reduce both the machining cost (UC) and the computation time.
2019-02-14
Dauda, Ahmed, Mclean, Scott, Almehmadi, Abdulaziz, El-Khatib, Khalil.  2018.  Big Data Analytics Architecture for Security Intelligence. Proceedings of the 11th International Conference on Security of Information and Networks. :19:1-19:4.

The need for security1 continues to grow in distributed computing. Today's security solutions require greater scalability and convenience in cloud-computing architectures, in addition to the ability to store and process larger volumes of data to address very sophisticated attacks. This paper explores some of the existing architectures for big data intelligence analytics, and proposes an architecture that promises to provide greater security for data intensive environments. The architecture is designed to leverage the wealth in the multi-source information for security intelligence.

2019-02-08
Shi, Jianpei, Zhang, Liqiang, Ge, Daohan.  2018.  Remote Intelligent Position-Tracking and Control System with MCU/GSM/GPS/IoT. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. :66-70.

In this paper, we applied IoT (Internet of things) technology and SMS (short message service) technology to vehicle security system, and designed vehicle remote control system to ensure the vehicle security. Besides, we discussed the method that converted the displacement increment to latitude and longitude increment in order to solve the problem that how to accurately obtain the current location information when GPS (Global Positioning System) failed. The hardware system can realize such function that owners by sending an SMS, or by sending the password through web side of IoT platform, you can remotely control the car alarm system opening or closing, and query vehicle position and other functions. Through this method, it is easy to achieve security for vehicle positioning and tracking.

2019-01-31
Riazi, M. Sadegh, Koushanfar, Farinaz.  2018.  Privacy-Preserving Deep Learning and Inference. Proceedings of the International Conference on Computer-Aided Design. :18:1–18:4.

We provide a systemization of knowledge of the recent progress made in addressing the crucial problem of deep learning on encrypted data. The problem is important due to the prevalence of deep learning models across various applications, and privacy concerns over the exposure of deep learning IP and user's data. Our focus is on provably secure methodologies that rely on cryptographic primitives and not trusted third parties/platforms. Computational intensity of the learning models, together with the complexity of realization of the cryptography algorithms hinder the practical implementation a challenge. We provide a summary of the state-of-the-art, comparison of the existing solutions, as well as future challenges and opportunities.

Menet, Fran\c cois, Berthier, Paul, Gagnon, Michel, Fernandez, José M..  2018.  Spartan Networks: Self-Feature-Squeezing Networks for Increased Robustness in Adversarial Settings. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2246–2248.

Deep Learning Models are vulnerable to adversarial inputs, samples modified in order to maximize error of the system. We hereby introduce Spartan Networks, Deep Learning models that are inherently more resistant to adverarial examples, without doing any input preprocessing out of the network or adversarial training. These networks have an adversarial layer within the network designed to starve the network of information, using a new activation function to discard data. This layer trains the neural network to filter-out usually-irrelevant parts of its input. These models thus have a slightly lower precision, but report a higher robustness under attack than unprotected models.

2018-08-23
Chowdhury, F. H., Shuvo, B., Islam, M. R., Ghani, T., Akash, S. A., Ahsan, R., Hassan, N. N..  2017.  Design, control amp;amp; performance analysis of secure you IoT based smart security system. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

The paper introduces a smart system developed with sensors that is useful for internal and external security. The system is useful for people living in houses, apartments, high officials, bank, and offices. The system is developed in two phases one for internal security like home another is external security like open areas, streets. The system is consist of a mobile application, capacitive sensing, smart routing these valuable features to ensure safety of life and wealth. This security system is wireless sensor based which is an effective alternative of cctv cameras and other available security systems. Efficiency of this system is developed after going through practical studies and prototyping. The end result explains the feasibility rate, positive impact factor, reliability of the system. More research is possible in future based on this system this research explains that.

Oleshchuk, V..  2017.  A trust-based security enforcement in disruption-tolerant networks. 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:514–517.

We propose an approach to enforce security in disruption- and delay-tolerant networks (DTNs) where long delays, high packet drop rates, unavailability of central trusted entity etc. make traditional approaches unfeasible. We use trust model based on subjective logic to continuously evaluate trustworthiness of security credentials issued in distributed manner by network participants to deal with absence of centralised trusted authorities.

Jinan, S., Kefeng, P., Xuefeng, C., Junfu, Z..  2017.  Security Patterns from Intelligent Data: A Map of Software Vulnerability Analysis. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :18–25.

A significant milestone is reached when the field of software vulnerability research matures to a point warranting related security patterns represented by intelligent data. A substantial research material of empirical findings, distinctive taxonomy, theoretical models, and a set of novel or adapted detection methods justify a unifying research map. The growth interest in software vulnerability is evident from a large number of works done during the last several decades. This article briefly reviews research works in vulnerability enumeration, taxonomy, models and detection methods from the perspective of intelligent data processing and analysis. This article also draws the map which associated with specific characteristics and challenges of vulnerability research, such as vulnerability patterns representation and problem-solving strategies.

Zhe, D., Qinghong, W., Naizheng, S., Yuhan, Z..  2017.  Study on Data Security Policy Based on Cloud Storage. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :145–149.

Along with the growing popularisation of Cloud Computing. Cloud storage technology has been paid more and more attention as an emerging network storage technology which is extended and developed by cloud computing concepts. Cloud computing environment depends on user services such as high-speed storage and retrieval provided by cloud computing system. Meanwhile, data security is an important problem to solve urgently for cloud storage technology. In recent years, There are more and more malicious attacks on cloud storage systems, and cloud storage system of data leaking also frequently occurred. Cloud storage security concerns the user's data security. The purpose of this paper is to achieve data security of cloud storage and to formulate corresponding cloud storage security policy. Those were combined with the results of existing academic research by analyzing the security risks of user data in cloud storage and approach a subject of the relevant security technology, which based on the structural characteristics of cloud storage system.

Lee, J., Kim, Y. S., Kim, J. H., Kim, I. K..  2017.  Toward the SIEM architecture for cloud-based security services. 2017 IEEE Conference on Communications and Network Security (CNS). :398–399.

Cloud Computing represents one of the most significant shifts in information technology and it enables to provide cloud-based security service such as Security-as-a-service (SECaaS). Improving of the cloud computing technologies, the traditional SIEM paradigm is able to shift to cloud-based security services. In this paper, we propose the SIEM architecture that can be deployed to the SECaaS platform which we have been developing for analyzing and recognizing intelligent cyber-threat based on virtualization technologies.

Belk, Marios, Pamboris, Andreas, Fidas, Christos, Katsini, Christina, Avouris, Nikolaos, Samaras, George.  2017.  Sweet-spotting Security and Usability for Intelligent Graphical Authentication Mechanisms. Proceedings of the International Conference on Web Intelligence. :252–259.
This paper investigates the trade-off between security and usability in recognition-based graphical authentication mechanisms. Through a user study (N=103) based on a real usage scenario, it draws insights about the security strength and memorability of a chosen password with respect to the amount of images presented to users during sign-up. In particular, it reveals the users' predisposition in following predictable patterns when selecting graphical passwords, and its effect on practical security strength. It also demonstrates that a "sweet-spot" exists between security and usability in graphical authentication approaches on the basis of adjusting accordingly the image grid size presented to users when creating passwords. The results of the study can be leveraged by researchers and practitioners engaged in designing intelligent graphical authentication user interfaces for striking an appropriate balance between security and usability.
Blenn, Norbert, Ghiëtte, Vincent, Doerr, Christian.  2017.  Quantifying the Spectrum of Denial-of-Service Attacks Through Internet Backscatter. Proceedings of the 12th International Conference on Availability, Reliability and Security. :21:1–21:10.
Denial of Service (DoS) attacks are a major threat currently observable in computer networks and especially the Internet. In such an attack a malicious party tries to either break a service, running on a server, or exhaust the capacity or bandwidth of the victim to hinder customers to effectively use the service. Recent reports show that the total number of Distributed Denial of Service (DDoS) attacks is steadily growing with "mega-attacks" peaking at hundreds of gigabit/s (Gbps). In this paper, we will provide a quantification of DDoS attacks in size and duration beyond these outliers reported in the media. We find that these mega attacks do exist, but the bulk of attacks is in practice only a fraction of these frequently reported values. We further show that it is feasible to collect meaningful backscatter traces using surprisingly small telescopes, thereby enabling a broader audience to perform attack intelligence research.
Halawa, Hassan, Ripeanu, Matei, Beznosov, Konstantin, Coskun, Baris, Liu, Meizhu.  2017.  An Early Warning System for Suspicious Accounts. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :51–52.
In the face of large-scale automated cyber-attacks to large online services, fast detection and remediation of compromised accounts are crucial to limit the spread of new attacks and to mitigate the overall damage to users, companies, and the public at large. We advocate a fully automated approach based on machine learning to enable large-scale online service providers to quickly identify potentially compromised accounts. We develop an early warning system for the detection of suspicious account activity with the goal of quick identification and remediation of compromised accounts. We demonstrate the feasibility and applicability of our proposed system in a four month experiment at a large-scale online service provider using real-world production data encompassing hundreds of millions of users. We show that - even using only login data, features with low computational cost, and a basic model selection approach - around one out of five accounts later flagged as suspicious are correctly predicted a month in advance based on one week's worth of their login activity.
2018-05-30
Mohaisen, Aziz, Al-Ibrahim, Omar, Kamhoua, Charles, Kwiat, Kevin, Njilla, Laurent.  2017.  Rethinking Information Sharing for Threat Intelligence. Proceedings of the Fifth ACM/IEEE Workshop on Hot Topics in Web Systems and Technologies. :6:1–6:7.

In the past decade, the information security and threat landscape has grown significantly making it difficult for a single defender to defend against all attacks at the same time. This called for introducing information sharing, a paradigm in which threat indicators are shared in a community of trust to facilitate defenses. Standards for representation, exchange, and consumption of indicators are proposed in the literature, although various issues are undermined. In this paper, we take the position of rethinking information sharing for actionable intelligence, by highlighting various issues that deserve further exploration. We argue that information sharing can benefit from well-defined use models, threat models, well-understood risk by measurement and robust scoring, well-understood and preserved privacy and quality of indicators and robust mechanism to avoid free riding behavior of selfish agents. We call for using the differential nature of data and community structures for optimizing sharing designs and structures.

2018-05-02
Menezes, B. A. M., Wrede, F., Kuchen, H., Neto, F. B. de Lima.  2017.  Parameter selection for swarm intelligence algorithms \#x2014; Case study on parallel implementation of FSS. 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). :1–6.

Swarm Intelligence (SI) algorithms, such as Fish School Search (FSS), are well known as useful tools that can be used to achieve a good solution in a reasonable amount of time for complex optimization problems. And when problems increase in size and complexity, some increase in population size or number of iterations might be needed in order to achieve a good solution. In extreme cases, the execution time can be huge and other approaches, such as parallel implementations, might help to reduce it. This paper investigates the relation and trade off involving these three aspects in SI algorithms, namely population size, number of iterations, and problem complexity. The results with a parallel implementations of FSS show that increasing the population size is beneficial for finding good solutions. However, we observed an asymptotic behavior of the results, i.e. increasing the population over a certain threshold only leads to slight improvements.

2018-02-06
Bullough, Benjamin L, Yanchenko, Anna K, Smith, Christopher L, Zipkin, Joseph R.  2017.  Predicting Exploitation of Disclosed Software Vulnerabilities Using Open-Source Data. Proceeding IWSPA '17 Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics.

Each year, thousands of software vulnerabilities are discovered and reported to the public. Unpatched known vulnerabilities are a significant security risk. It is imperative that software vendors quickly provide patches once vulnerabilities are known and users quickly install those patches as soon as they are available. However, most vulnerabilities are never actually exploited. Since writing, testing, and installing software patches can involve considerable resources, it would be desirable to prioritize the remediation of vulnerabilities that are likely to be exploited. Several published research studies have reported moderate success in applying machine learning techniques to the task of predicting whether a vulnerability will be exploited. These approaches typically use features derived from vulnerability databases (such as the summary text describing the vulnerability) or social media posts that mention the vulnerability by name. However, these prior studies share multiple methodological shortcomings that inflate predictive power of these approaches. We replicate key portions of the prior work, compare their approaches, and show how selection of training and test data critically affect the estimated performance of predictive models. The results of this study point to important methodological considerations that should be taken into account so that results reflect real-world utility.

 

2017-12-28
Manoja, I., Sk, N. S., Rani, D. R..  2017.  Prevention of DDoS attacks in cloud environment. 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC). :235–239.

Cloud computing emerges as an endowment technological data for the longer term and increasing on one of the standards of utility computing is most likely claimed to symbolize a wholly new paradigm for viewing and getting access to computational assets. As a result of protection problem many purchasers hesitate in relocating their touchy data on the clouds, regardless of gigantic curiosity in cloud-based computing. Security is a tremendous hassle, considering the fact that so much of firms present a alluring goal for intruders and the particular considerations will pursue to lower the advancement of distributed computing if not located. Hence, this recent scan and perception is suitable to honeypot. Distributed Denial of Service (DDoS) is an assault that threats the availability of the cloud services. It's fundamental investigate the most important features of DDoS Defence procedures. This paper provides exact techniques that been carried out to the DDoS attack. These approaches are outlined in these paper and use of applied sciences for special kind of malfunctioning within the cloud.

2017-09-15
Tomuro, Noriko, Lytinen, Steven, Hornsburg, Kurt.  2016.  Automatic Summarization of Privacy Policies Using Ensemble Learning. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :133–135.

When customers purchase a product or sign up for service from a company, they often are required to agree to a Privacy Policy or Terms of Service agreement. Many of these policies are lengthy, and a typical customer agrees to them without reading them carefully if at all. To address this problem, we have developed a prototype automatic text summarization system which is specifically designed for privacy policies. Our system generates a summary of a policy statement by identifying important sentences from the statement, categorizing these sentences by which of 5 "statement categories" the sentence addresses, and displaying to a user a list of the sentences which match each category. Our system incorporates keywords identified by a human domain expert and rules that were obtained by machine learning, and they are combined in an ensemble architecture. We have tested our system on a sample corpus of privacy statements, and preliminary results are promising.