Biblio
Big data provides a way to handle and analyze large amount of data or complex set. It provides a systematic extraction also. In this paper a hybrid security analysis based on intelligent adaptive learning in big data has been discussed with the current trends. This paper also explores the possibility of cloud computing collaboration with big data. The advantages along with the impact for the overall platform evaluation has been discussed with the traditional trends. It has been useful in the analysis and the exploration of future research. This discussion also covers the computational variability and the connotation in terms of data reliability, availability and management in big data with data security aspects.
The current trend of IoT user is toward the use of services and data externally due to voluminous processing, which demands resourceful machines. Instead of relying on the cloud of poor connectivity or a limited bandwidth, the IoT user prefers to use a cloudlet-based fog computing. However, the choice of cloudlet is solely dependent on its trust and reliability. In practice, even though a cloudlet possesses a required trusted platform module (TPM), we argue that the presence of a TPM is not enough to make the cloudlet trustworthy as the TPM supports only the primitive security of the bootstrap. Besides uncertainty in security, other uncertain conditions of the network (e.g. network bandwidth, latency and expectation time to complete a service request for cloud-based services) may also prevail for the cloudlets. Therefore, in order to evaluate the trust value of multiple cloudlets under uncertainty, this paper broadly proposes the empirical process for evaluation of trust. This will be followed by a measure of trust-based reputation of cloudlets through computational intelligence such as fuzzy logic and ant colony optimization (ACO). In the process, fuzzy logic-based inference and membership evaluation of trust are presented. In addition, ACO and its pheromone communication across different colonies are being modeled with multiple cloudlets. Finally, a measure of affinity or popular trust and reputation of the cloudlets is also proposed. Together with the context of application under multiple cloudlets, the computationally intelligent approaches have been investigated in terms of performance. Hence the contribution is subjected towards building a trusted cloudlet-based fog platform.
The evolution of smart automobiles and vehicles within the Internet of Things (IoT) - particularly as that evolution leads toward a proliferation of completely autonomous vehicles - has sparked considerable interest in the subject of vehicle/automotive security. While the attack surface is wide, there are patterns of exploitable vulnerabilities. In this study we reviewed, classified according to their attack surface and evaluated some of the common vehicle and infrastructure attack vectors identified in the literature. To remediate these attack vectors, specific technical recommendations have been provided as a way towards secure deployments of smart automobiles and transportation infrastructures.
In today's IIoT world, most of the IoT platform providers like Microsoft, Amazon and Google are focused towards connecting devices and extract data from the devices and send the data to the Cloud for analytics. Only there are few companies concentrating on Security measures implemented on Edge Node. Gartner estimates that by 2020, more than 25 percent of all enterprise attackers will make use of the Industrial IoT. As Cyber Security Threat is getting more important, it is essential to ensure protection of data both at rest and at motion. The reflex of Cyber Security in the Industrial IoT Domain is much more severe when compared to the Consumer IoT Segment. The new bottleneck in this are security services which employ computationally intensive software operations and system services [1]. Resilient services consume considerable resources in a design. When such measures are added to thwart security attacks, the resource requirements grow even more demanding. Since the standard IIoT Gateways and other sub devices are resource constrained in nature the conventional design for security services will not be applicable in this case. This paper proposes an intelligent architectural paradigm for the Constrained IIoT Gateways that can efficiently identify the Cyber-Attacks in the Industrial IoT domain.
Deep Learning is an area of Machine Learning research, which can be used to manipulate large amount of information in an intelligent way by using the functionality of computational intelligence. A deep learning system is a fully trainable system beginning from raw input to the final output of recognized objects. Feature selection is an important aspect of deep learning which can be applied for dimensionality reduction or attribute reduction and making the information more explicit and usable. Deep learning can build various learning models which can abstract unknown information by selecting a subset of relevant features. This property of deep learning makes it useful in analysis of highly complex information one which is present in intrusive data or information flowing with in a web system or a network which needs to be analyzed to detect anomalies. Our approach combines the intelligent ability of Deep Learning to build a smart Intrusion detection system.