Visible to the public Biblio

Filters: Keyword is parameter estimation  [Clear All Filters]
2023-07-11
Sennewald, Tom, Song, Xinya, Westermann, Dirk.  2022.  Assistance System to Consider Dynamic Phenomena for Secure System Operation. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
This contribution provides the implementation of a digital twin-based assistance system to be used in future control rooms. By applying parameter estimation methods, the dynamic model in the digital twin is an accurate representation of the physical system. Therefore, a dynamic security assessment (DSA) that is highly dependent on a correctly parameterized dynamic model, can give more reliable information to a system operator in the control room. The assistance system is studied on the Cigré TB 536 benchmark system with an obscured set of machine parameters. Through the proposed parameter estimation approach the original parameters could be estimated, changing, and increasing the statement of the DSA in regard to imminent instabilities.
2023-05-12
Qin, Shuying, Fang, Chongrong, He, Jianping.  2022.  Towards Characterization of General Conditions for Correlated Differential Privacy. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :364–372.
Differential privacy is a widely-used metric, which provides rigorous privacy definitions and strong privacy guarantees. Much of the existing studies on differential privacy are based on datasets where the tuples are independent, and thus are not suitable for correlated data protection. In this paper, we focus on correlated differential privacy, by taking the data correlations and the prior knowledge of the initial data into account. The data correlations are modeled by Bayesian conditional probabilities, and the prior knowledge refers to the exact values of the data. We propose general correlated differential privacy conditions for the discrete and continuous random noise-adding mechanisms, respectively. In case that the conditions are inaccurate due to the insufficient prior knowledge, we introduce the tuple dependence based on rough set theory to improve the correlated differential privacy conditions. The obtained theoretical results reveal the relationship between the correlations and the privacy parameters. Moreover, the improved privacy condition helps strengthen the mechanism utility. Finally, evaluations are conducted over a micro-grid system to verify the privacy protection levels and utility guaranteed by correlated differential private mechanisms.
ISSN: 2155-6814
2023-03-17
Savoie, Marc, Shan, Jinjun.  2022.  Monte Carlo Study of Jiles-Atherton Parameters on Hysteresis Area and Remnant Displacement. 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE). :1017–1022.
In this study, the parameters of the Jiles-Atherton (JA) model are investigated to determine suitable solution candidates for hysteresis models of a piezoelectric actuator (PEA). The methodology of this study is to perform Monte Carlo experiments on the JA model by randomly selecting parameters that generate hysteresis curves. The solution space is then restrained such that their normalized area and remnant displacements are comparable to those of the PEA. The data resulting from these Monte Carlo simulations show trends in the parameter space that can be used to further restrain parameter selection windows to find suitable JA parameters to model PEAs. In particular, the results show that selection of the reversibility coefficient and the pinning factor strongly affect both of the hysteresis characteristics studied. A large density of solutions is found in certain parameter distributions for both the area and the remnant displacement, but the remnant displacement generates the densest distributions. These results can be used to more effectively find suitable hysteresis models for modeling purposes.
ISSN: 2163-5145
2022-12-09
M, Gayathri, Gomathy, C..  2022.  Fuzzy based Trusted Communication in Vehicular Ad hoc Network. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.
Vehicular Ad hoc Network (VANET) is an emerging technology that is used to provide communication between vehicle users. VANET provides communication between one vehicle node to another vehicle node, vehicle to the roadside unit, vehicle to pedestrian, and even vehicle to rail users. Communication between nodes should be very secure and confidential, Since VANET communicates through wireless mode, a malicious node may enter inside the communication zone to hack, inject false messages, and interrupt the communication. A strong protocol is necessary to detect malicious nodes and authenticate the VANET user to protect them from malicious attacks. In this paper, a fuzzy-based trust authentication scheme is used to detect malicious nodes with the Mamdani fuzzy Inference system. The parameter estimation, rules have been framed using MATLAB Mamdani Fuzzy Inference system to select a genuine node for data transmission.
2021-02-16
Jin, Y., Tian, Z., Zhou, M., Wang, H..  2020.  MuTrack: Multiparameter Based Indoor Passive Tracking System Using Commodity WiFi. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Device-Free Localization and Tracking (DFLT) acts as a key component for the contactless awareness applications such as elderly care and home security. However, the random phase errors in WiFi signal and weak target echoes submerged in background clutter signals are mainly obstacles for current DFLT systems. In this paper, we propose the design and implementation of MuTrack, a multiparameter based DFLT system using commodity WiFi devices with a single link. Firstly, we select an antenna with maximum reliability index as the reference antenna for signal sanitization in which the conjugate operation removes the random phase errors. Secondly, we design a multi-dimensional parameters estimator and then refine path parameters by optimizing the complete data of path components. Finally, the Hungarian Kalman Filter based tracking method is proposed to derive accurate locations from low-resolution parameter estimates. We extensively validate the proposed system in typical indoor environment and these experimental results show that MuTrack can achieve high tracking accuracy with the mean error of 0.82 m using only a single link.
2020-04-20
Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2018.  PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1316–1320.
We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
2018-11-19
Samudrala, A. N., Blum, R. S..  2017.  Asymptotic Analysis of a New Low Complexity Encryption Approach for the Internet of Things, Smart Cities and Smart Grid. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). :200–204.

Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.

2018-09-28
Wei, P., Xia, B., Luo, X..  2017.  Parameter estimation and convergence analysis for a class of canonical dynamic systems by extended kalman filter. 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). :336–340.

There were many researches about the parameter estimation of canonical dynamic systems recently. Extended Kalman filter (EKF) is a popular parameter estimation method in virtue of its easy applications. This paper focuses on parameter estimation for a class of canonical dynamic systems by EKF. By constructing associated differential equation, the convergence of EKF parameter estimation for the canonical dynamic systems is analyzed. And the simulation demonstrates the good performance.

2018-04-11
Huang, Kaiyu, Qu, Y., Zhang, Z., Chakravarthy, V., Zhang, Lin, Wu, Z..  2017.  Software Defined Radio Based Mixed Signal Detection in Spectrally Congested and Spectrally Contested Environment. 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). :1–6.

In a spectrally congested environment or a spectrally contested environment which often occurs in cyber security applications, multiple signals are often mixed together with significant overlap in spectrum. This makes the signal detection and parameter estimation task very challenging. In our previous work, we have demonstrated the feasibility of using a second order spectrum correlation function (SCF) cyclostationary feature to perform mixed signal detection and parameter estimation. In this paper, we present our recent work on software defined radio (SDR) based implementation and demonstration of such mixed signal detection algorithms. Specifically, we have developed a software defined radio based mixed RF signal generator to generate mixed RF signals in real time. A graphical user interface (GUI) has been developed to allow users to conveniently adjust the number of mixed RF signal components, the amplitude, initial time delay, initial phase offset, carrier frequency, symbol rate, modulation type, and pulse shaping filter of each RF signal component. This SDR based mixed RF signal generator is used to transmit desirable mixed RF signals to test the effectiveness of our developed algorithms. Next, we have developed a software defined radio based mixed RF signal detector to perform the mixed RF signal detection. Similarly, a GUI has been developed to allow users to easily adjust the center frequency and bandwidth of band of interest, perform time domain analysis, frequency domain analysis, and cyclostationary domain analysis.

2018-03-26
Hosseinpourpia, M., Oskoei, M. A..  2017.  GA Based Parameter Estimation for Multi-Faceted Trust Model of Recommender Systems. 2017 5th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). :160–165.

Recommender system is to suggest items that might be interest of the users in social networks. Collaborative filtering is an approach that works based on similarity and recommends items liked by other similar users. Trust model adopts users' trust network in place of similarity. Multi-faceted trust model considers multiple and heterogeneous trust relationship among the users and recommend items based on rating exist in the network of trustees of a specific facet. This paper applies genetic algorithm to estimate parameters of multi-faceted trust model, in which the trust weights are calculated based on the ratings and the trust network for each facet, separately. The model was built on Epinions data set that includes consumers' opinion, rating for items and the web of trust network. It was used to predict users' rating for items in different facets and root mean squared of prediction error (RMSE) was considered as a measure of performance. Empirical evaluations demonstrated that multi-facet models improve performance of the recommender system.

2018-02-15
Dong, H., Ma, T., He, B., Zheng, J., Liu, G..  2017.  Multiple-fault diagnosis of analog circuit with fault tolerance. 2017 6th Data Driven Control and Learning Systems (DDCLS). :292–296.

A novel method, consisting of fault detection, rough set generation, element isolation and parameter estimation is presented for multiple-fault diagnosis on analog circuit with tolerance. Firstly, a linear-programming concept is developed to transform fault detection of circuit with limited accessible terminals into measurement to check existence of a feasible solution under tolerance constraints. Secondly, fault characteristic equation is deduced to generate a fault rough set. It is proved that the node voltages of nominal circuit can be used in fault characteristic equation with fault tolerance. Lastly, fault detection of circuit with revised deviation restriction for suspected fault elements is proceeded to locate faulty elements and estimate their parameters. The diagnosis accuracy and parameter identification precision of the method are verified by simulation results.

Filaretov, V., Kurganov, S., Gorshkov, K..  2017.  Multiple fault diagnosis in analog circuits using the indirect compensation theorem. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–6.

A method for the multiple faults diagnosis in linear analog circuits is presented in this paper. The proposed approach is based upon the concept named by the indirect compensation theorem. This theorem is reducing the procedure of fault diagnosis in the analog circuit to the symbolic analysis process. An extension of the indirect compensation theorem for the linear subcircuit is proposed. The indirect compensation provides equivalent replacement of the n-ports subcircuit by n norators and n fixators of voltages and currents. The proposed multiple faults diagnosis techniques can be used for evaluation of any kind of terminal characteristics of the two-port network. For calculation of the circuit determinant expressions, the Generalized Parameter Extraction Method is implemented. The main advantage of the analysis method is that it is cancellation free. It requires neither matrix nor ordinary graph description of the circuit. The process of symbolic circuit analysis is automated by the freeware computer program Cirsym which can be used online. The experimental results are presented to show the efficiency and reliability of the proposed technique.

2017-02-14
M. Q. Ali, A. B. Ashfaq, E. Al-Shaer, Q. Duan.  2015.  "Towards a science of anomaly detection system evasion". 2015 IEEE Conference on Communications and Network Security (CNS). :460-468.

A fundamental drawback of current anomaly detection systems (ADSs) is the ability of a skilled attacker to evade detection. This is due to the flawed assumption that an attacker does not have any information about an ADS. Advanced persistent threats that are capable of monitoring network behavior can always estimate some information about ADSs which makes these ADSs susceptible to evasion attacks. Hence in this paper, we first assume the role of an attacker to launch evasion attacks on anomaly detection systems. We show that the ADSs can be completely paralyzed by parameter estimation attacks. We then present a mathematical model to measure evasion margin with the aim to understand the science of evasion due to ADS design. Finally, to minimize the evasion margin, we propose a key-based randomization scheme for existing ADSs and discuss its robustness against evasion attacks. Case studies are presented to illustrate the design methodology and extensive experimentation is performed to corroborate the results.

2015-05-05
Jian Wu, Yongmei Jiang, Gangyao Kuang, Jun Lu, Zhiyong Li.  2014.  Parameter estimation for SAR moving target detection using Fractional Fourier Transform. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. :596-599.

This paper proposes an algorithm for multi-channel SAR ground moving target detection and estimation using the Fractional Fourier Transform(FrFT). To detect the moving target with low speed, the clutter is first suppressed by Displace Phase Center Antenna(DPCA), then the signal-to-clutter can be enhanced. Have suppressed the clutter, the echo of moving target remains and can be regarded as a chirp signal whose parameters can be estimated by FrFT. FrFT, one of the most widely used tools to time-frequency analysis, is utilized to estimate the Doppler parameters, from which the moving parameters, including the velocity and the acceleration can be obtained. The effectiveness of the proposed method is validated by the simulation.