Visible to the public Biblio

Filters: Keyword is Asymmetric Encryption  [Clear All Filters]
2018-04-02
Sridhar, S., Smys, S..  2017.  Intelligent Security Framework for Iot Devices Cryptography Based End-to-End Security Architecture. 2017 International Conference on Inventive Systems and Control (ICISC). :1–5.

Internet of Thing (IoT) provide services by linking the different platform devices. They have the limitation in providing intelligent service. The IoT devices are heterogeneous which includes wireless sensors to less resource constrained devices. These devices are prone to hardware/software and network attacks. If not properly secured, it may lead to security issues like privacy and confidentiality. To resolve the above problem, an Intelligent Security Framework for IoT Devices is proposed in this paper. The proposed method is made up of (1) the light weight Asymmetric cryptography for securing the End-To-End devices which protects the IoT service gateway and the low power sensor nodes and (2) implements Lattice-based cryptography for securing the Broker devices/Gateway and the cloud services. The proposed architecture implements Asymmetric Key Encryption to share session key between the nodes and then uses this session key for message transfer This protects the system from Distributed Denial of Service Attacks, eavesdropping and Quantum algorithm attacks. The proposed protocol uses the unique Device ID of the sensors to generate key pair to establish mutual authentication between Devices and Services. Finally, the Mutual authentication mechanism is implemented in the gateway.

Lin, W., Wang, K., Zhang, Z., Chen, H..  2017.  Revisiting Security Risks of Asymmetric Scalar Product Preserving Encryption and Its Variants. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1116–1125.

Cloud computing has emerged as a compelling vision for managing data and delivering query answering capability over the internet. This new way of computing also poses a real risk of disclosing confidential information to the cloud. Searchable encryption addresses this issue by allowing the cloud to compute the answer to a query based on the cipher texts of data and queries. Thanks to its inner product preservation property, the asymmetric scalar-product-preserving encryption (ASPE) has been adopted and enhanced in a growing number of works toperform a variety of queries and tasks in the cloud computingsetting. However, the security property of ASPE and its enhancedschemes has not been studied carefully. In this paper, we show acomplete disclosure of ASPE and several previously unknownsecurity risks of its enhanced schemes. Meanwhile, efficientalgorithms are proposed to learn the plaintext of data and queriesencrypted by these schemes with little or no knowledge beyondthe ciphertexts. We demonstrate these risks on real data sets.

Boicea, A., Radulescu, F., Truica, C. O., Costea, C..  2017.  Database Encryption Using Asymmetric Keys: A Case Study. 2017 21st International Conference on Control Systems and Computer Science (CSCS). :317–323.

Data security has become an issue of increasing importance, especially for Web applications and distributed databases. One solution is using cryptographic algorithms whose improvement has become a constant concern. The increasing complexity of these algorithms involves higher execution times, leading to an application performance decrease. This paper presents a comparison of execution times for three algorithms using asymmetric keys, depending on the size of the encryption/decryption keys: RSA, ElGamal, and ECIES. For this algorithms comparison, a benchmark using Java APIs and an application for testing them on a test database was created.

Innokentievich, T. P., Vasilevich, M. V..  2017.  The Evaluation of the Cryptographic Strength of Asymmetric Encryption Algorithms. 2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC). :180–183.

We propose a method for comparative analysis of evaluation of the cryptographic strength of the asymmetric encryption algorithms RSA and the existing GOST R 34.10-2001. Describes the fundamental design ratios, this method is based on computing capacity used for decoding and the forecast for the development of computer technology.

Yassein, M. B., Aljawarneh, S., Qawasmeh, E., Mardini, W., Khamayseh, Y..  2017.  Comprehensive Study of Symmetric Key and Asymmetric Key Encryption Algorithms. 2017 International Conference on Engineering and Technology (ICET). :1–7.

Cloud computing emerged in the last years to handle systems with large-scale services sharing between vast numbers of users. It provides enormous storage for data and computing power to users over the Internet. There are many issues with the high growth of data. Data security is one of the most important issues in cloud computing. There are many algorithms and implementation for data security. These algorithms provided various encryption methods. In this work, We present a comprehensive study between Symmetric key and Asymmetric key encryption algorithms that enhanced data security in cloud computing system. We discuss AES, DES, 3DES and Blowfish for symmetric encryption algorithms, and RSA, DSA, Diffie-Hellman and Elliptic Curve, for asymmetric encryption algorithms.

2018-01-23
Beegom, S. B., Jose, S..  2017.  An enhanced cryptographic model based on DNA approach. 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 2:317–322.

DNA cryptography is one of the promising fields in cryptographic research which emerged with the evolution of DNA computing. In this era, end to end transmission of secure data by ensuring confidentiality and authenticity over the networks is a real challenge. Even though various DNA based cryptographic algorithms exists, they are not secure enough to provide better security as required with today's security requirements. Hence we propose a cryptographic model which will enhance the message security. A new method of round key selection is used, which provides better and enhanced security against intruder's attack. The crucial attraction of this proposed model is providing multi level security of 3 levels with round key selection and message encryption in level 1, 16×16 matrix manipulation using asymmetric key encryption in level 2 and shift operations in level 3. Thus we design a system with multi level encryption without compromising complexity and size of the cipher text.

2017-10-27
Brakerski, Zvika, Vaikuntanathan, Vinod, Wee, Hoeteck, Wichs, Daniel.  2016.  Obfuscating Conjunctions Under Entropic Ring LWE. Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. :147–156.
We show how to securely obfuscate conjunctions, which are functions f(x1,...,xn) = ∧i∈I yi where I ⊆ [n] and each literal yi is either just xi or ¬ xi e.g., f(xi,...,x\_n) = xi ⊆ ¬ x3 ⊆ ¬ x7 ... ⊆ x\\textbackslashvphantom\n-1. Whereas prior work of Brakerski and Rothblum (CRYPTO 2013) showed how to achieve this using a non-standard object called cryptographic multilinear maps, our scheme is based on an "entropic" variant of the Ring Learning with Errors (Ring LWE) assumption. As our core tool, we prove that hardness assumptions on the recent multilinear map construction of Gentry, Gorbunov and Halevi (TCC 2015) can be established based on entropic Ring LWE. We view this as a first step towards proving the security of additional mutlilinear map based constructions, and in particular program obfuscators, under standard assumptions. Our scheme satisfies virtual black box (VBB) security, meaning that the obfuscated program reveals nothing more than black-box access to f as an oracle, at least as long as (essentially) the conjunction is chosen from a distribution having sufficient entropy.
Xu, Peng, Li, Jingnan, Wang, Wei, Jin, Hai.  2016.  Anonymous Identity-Based Broadcast Encryption with Constant Decryption Complexity and Strong Security. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :223–233.
Anonymous Identity-Based Broadcast Encryption (AIBBE) allows a sender to broadcast a ciphertext to multi-receivers, and keeps receivers' anonymity. The existing AIBBE schemes fail to achieve efficient decryption or strong security, like the constant decryption complexity, the security under the adaptive attack, or the security in the standard model. Hence, we propose two new AIBBE schemes to overcome the drawbacks of previous schemes in the state-of-art. The biggest contribution in our work is the proposed AIBBE scheme with constant decryption complexity and the provable security under the adaptive attack in the standard model. This scheme should be the first one to obtain advantages in all above mentioned aspects, and has sufficient contribution in theory due to its strong security. We also propose another AIBBE scheme in the Random Oracle (RO) model, which is of sufficient interest in practice due to our experiment.
Buchmann, Johannes, Göpfert, Florian, Güneysu, Tim, Oder, Tobias, Pöppelmann, Thomas.  2016.  High-Performance and Lightweight Lattice-Based Public-Key Encryption. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :2–9.
In the emerging Internet of Things, lightweight public-key cryptography is an essential component for many cost-efficient security solutions. Since conventional public-key schemes, such as ECC and RSA, remain expensive and energy hungry even after aggressive optimization, this work investigates a possible alternative. In particular, we show the practical potential of replacing the Gaussian noise distribution in the Ring-LWE based encryption scheme by Lindner and Peikert/Lyubashevsky et al. with a binary distribution. When parameters are carefully chosen, our construction is resistant against any state-of-the-art cryptanalytic techniques (e.g., attacks on original Ring-LWE or NTRU) and suitable for low-cost scenarios. In the end, our scheme can enable public-key encryption even on very small and low-cost 8-bit (ATXmega128) and 32-bit (Cortex-M0) microcontrollers.
Susilo, Willy, Chen, Rongmao, Guo, Fuchun, Yang, Guomin, Mu, Yi, Chow, Yang-Wai.  2016.  Recipient Revocable Identity-Based Broadcast Encryption: How to Revoke Some Recipients in IBBE Without Knowledge of the Plaintext. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :201–210.
In this paper, we present the notion of recipient-revocable identity-based broadcast encryption scheme. In this notion, a content provider will produce encrypted content and send them to a third party (which is a broadcaster). This third party will be able to revoke some identities from the ciphertext. We present a security model to capture these requirements, as well as a concrete construction. The ciphertext consists of k+3 group elements, assuming that the maximum number of revocation identities is k. That is, the ciphertext size is linear in the maximal size of R, where R is the revocation identity set. However, we say that the additional elements compared to that from an IBBE scheme are only for the revocation but not for decryption. Therefore, the ciphertext sent to the users for decryption will be of constant size (i.e.,3 group elements). Finally, we present the proof of security of our construction.
Fang, Fuyang, Li, Bao, Lu, Xianhui, Liu, Yamin, Jia, Dingding, Xue, Haiyang.  2016.  (Deterministic) Hierarchical Identity-based Encryption from Learning with Rounding over Small Modulus. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :907–912.
In this paper, we propose a hierarchical identity-based encryption (HIBE) scheme in the random oracle (RO) model based on the learning with rounding (LWR) problem over small modulus \$q\$. Compared with the previous HIBE schemes based on the learning with errors (LWE) problem, the ciphertext expansion ratio of our scheme can be decreased to 1/2. Then, we utilize the HIBE scheme to construct a deterministic hierarchical identity-based encryption (D-HIBE) scheme based on the LWR problem over small modulus. Finally, with the technique of binary tree encryption (BTE) we can construct HIBE and D-HIBE schemes in the standard model based on the LWR problem over small modulus.
Xu, Peng, Xu, Jun, Wang, Wei, Jin, Hai, Susilo, Willy, Zou, Deqing.  2016.  Generally Hybrid Proxy Re-Encryption: A Secure Data Sharing Among Cryptographic Clouds. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :913–918.

Proxy Re-Encryption (PRE) is a favorable primitive to realize a cryptographic cloud with secure and flexible data sharing mechanism. A number of PRE schemes with versatile capabilities have been proposed for different applications. The secure data sharing can be internally achieved in each PRE scheme. But no previous work can guarantee the secure data sharing among different PRE schemes in a general manner. Moreover, it is challenging to solve this problem due to huge differences among the existing PRE schemes in their algebraic systems and public-key types. To solve this problem more generally, this paper uniforms the definitions of the existing PRE and Public Key Encryption (PKE) schemes, and further uniforms their security definitions. Then taking any uniformly defined PRE scheme and any uniformly defined PKE scheme as two building blocks, this paper constructs a Generally Hybrid Proxy Re-Encryption (GHPRE) scheme with the idea of temporary public and private keys to achieve secure data sharing between these two underlying schemes. Since PKE is a more general definition than PRE, the proposed GHPRE scheme also is workable between any two PRE schemes. Moreover, the proposed GHPRE scheme can be transparently deployed even if the underlying PRE schemes are implementing.

Paira, Smita, Chandra, Sourabh, Alam, Sk Safikul.  2016.  Segmented Crypto Algorithm. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :116:1–116:5.
With the emerging Science and Technology, network security has become a major concern. Researchers have proposed new theories and applications to eradicate the unethical access to the secret message. This paper presents a new algorithm on Symmetric Key Cryptography. The algorithm comprises of a bitwise shifting operation, folding logic along with simple mathematical operations. The fundamental security of the algorithm lies in the dual-layered encryption and decryption processes which divide the entire method into various phases. The algorithm implements a ciphered array key which itself hides the actual secret key to increase the integrity of the cryptosystem. The algorithm has been experimentally tested and the test results are promising.
2017-09-11
Afanasyev, Alexander, Halderman, J. Alex, Ruoti, Scott, Seamons, Kent, Yu, Yingdi, Zappala, Daniel, Zhang, Lixia.  2016.  Content-based Security for the Web. Proceedings of the 2016 New Security Paradigms Workshop. :49–60.

The World Wide Web has become the most common platform for building applications and delivering content. Yet despite years of research, the web continues to face severe security challenges related to data integrity and confidentiality. Rather than continuing the exploit-and-patch cycle, we propose addressing these challenges at an architectural level, by supplementing the web's existing connection-based and server-based security models with a new approach: content-based security. With this approach, content is directly signed and encrypted at rest, enabling it to be delivered via any path and then validated by the browser. We explore how this new architectural approach can be applied to the web and analyze its security benefits. We then discuss a broad research agenda to realize this vision and the challenges that must be overcome.

2017-09-05
Dang, Hung, Chong, Yun Long, Brun, Francois, Chang, Ee-Chien.  2016.  Practical and Scalable Sharing of Encrypted Data in Cloud Storage with Key Aggregation. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :69–80.

We study a sensor network setting in which samples are encrypted individually using different keys and maintained on a cloud storage. For large systems, e.g. those that generate several millions of samples per day, fine-grained sharing of encrypted samples is challenging. Existing solutions, such as Attribute-Based Encryption (ABE) and Key Aggregation Cryptosystem (KAC), can be utilized to address the challenge, but only to a certain extent. They are often computationally expensive and thus unlikely to operate at scale. We propose an algorithmic enhancement and two heuristics to improve KAC's key reconstruction cost, while preserving its provable security. The improvement is particularly significant for range and down-sampling queries – accelerating the reconstruction cost from quadratic to linear running time. Experimental study shows that for queries of size 32k samples, the proposed fast reconstruction techniques speed-up the original KAC by at least 90 times on range and down-sampling queries, and by eight times on general (arbitrary) queries. It also shows that at the expense of splitting the query into 16 sub-queries and correspondingly issuing that number of different aggregated keys, reconstruction time can be reduced by 19 times. As such, the proposed techniques make KAC more applicable in practical scenarios such as sensor networks or the Internet of Things.

2017-05-30
Horsch, Julian, Wessel, Sascha, Eckert, Claudia.  2016.  CoKey: Fast Token-based Cooperative Cryptography. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :314–323.

Keys for symmetric cryptography are usually stored in RAM and therefore susceptible to various attacks, ranging from simple buffer overflows to leaks via cold boot, DMA or side channels. A common approach to mitigate such attacks is to move the keys to an external cryptographic token. For low-throughput applications like asymmetric signature generation, the performance of these tokens is sufficient. For symmetric, data-intensive use cases, like disk encryption on behalf of the host, the connecting interface to the token often is a serious bottleneck. In order to overcome this problem, we present CoKey, a novel concept for partially moving symmetric cryptography out of the host into a trusted detachable token. CoKey combines keys from both entities and securely encrypts initialization vectors on the token which are then used in the cryptographic operations on the host. This forces host and token to cooperate during the whole encryption and decryption process. Our concept strongly and efficiently binds encrypted data on the host to the specific token used for their encryption, while still allowing for fast operation. We implemented the concept using Linux hosts and the USB armory, a USB thumb drive sized ARM computer, as detachable crypto token. Our detailed performance evaluation shows that our prototype is easily fast enough even for data-intensive and performance-critical use cases like full disk encryption, thus effectively improving security for symmetric cryptography in a usable way.

2017-05-22
Tan, Chuting, Jiang, Zoe L., Wang, Xuan, Yiu, S.M., Fang, Junbin, Li, Jin, Jin, Yabin, Huang, Jiajun.  2016.  Generic Construction of Publicly Verifiable Predicate Encryption. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :889–894.

There is an increasing trend for data owners to store their data in a third-party cloud server and buy the service from the cloud server to provide information to other users. To ensure confidentiality, the data is usually encrypted. Therefore, an encrypted data searching scheme with privacy preserving is of paramount importance. Predicate encryption (PE) is one of the attractive solutions due to its attribute-hiding merit. However, as cloud is not always trusted, verifying the searched results is also crucial. Firstly, a generic construction of Publicly Verifiable Predicate Encryption (PVPE) scheme is proposed to provide verification for PE. We reduce the security of PVPE to the security of PE. However, from practical point of view, to decrease the communication overhead and computation overhead, an improved PVPE is proposed with the trade-off of a small probability of error.

2017-03-29
Zhao, Yunlei.  2016.  Identity-Concealed Authenticated Encryption and Key Exchange. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1464–1479.

Identity concealment and zero-round trip time (0-RTT) connection are two of current research focuses in the design and analysis of secure transport protocols, like TLS1.3 and Google's QUIC, in the client-server setting. In this work, we introduce a new primitive for identity-concealed authenticated encryption in the public-key setting, referred to as higncryption, which can be viewed as a novel monolithic integration of public-key encryption, digital signature, and identity concealment. We then present the security definitional framework for higncryption, and a conceptually simple (yet carefully designed) protocol construction. As a new primitive, higncryption can have many applications. In this work, we focus on its applications to 0-RTT authentication, showing higncryption is well suitable to and compatible with QUIC and OPTLS, and on its applications to identity-concealed authenticated key exchange (CAKE) and unilateral CAKE (UCAKE). Of independent interest is a new concise security definitional framework for CAKE and UCAKE proposed in this work, which unifies the traditional BR and (post-ID) frameworks, enjoys composability, and ensures very strong security guarantee. Along the way, we make a systematically comparative study with related protocols and mechanisms including Zheng's signcryption, one-pass HMQV, QUIC, TLS1.3 and OPTLS, most of which are widely standardized or in use.

2015-05-05
Amin, S., Clark, T., Offutt, R., Serenko, K..  2014.  Design of a cyber security framework for ADS-B based surveillance systems. Systems and Information Engineering Design Symposium (SIEDS), 2014. :304-309.

The need for increased surveillance due to increase in flight volume in remote or oceanic regions outside the range of traditional radar coverage has been fulfilled by the advent of space-based Automatic Dependent Surveillance — Broadcast (ADS-B) Surveillance systems. ADS-B systems have the capability of providing air traffic controllers with highly accurate real-time flight data. ADS-B is dependent on digital communications between aircraft and ground stations of the air route traffic control center (ARTCC); however these communications are not secured. Anyone with the appropriate capabilities and equipment can interrogate the signal and transmit their own false data; this is known as spoofing. The possibility of this type of attacks decreases the situational awareness of United States airspace. The purpose of this project is to design a secure transmission framework that prevents ADS-B signals from being spoofed. Three alternative methods of securing ADS-B signals are evaluated: hashing, symmetric encryption, and asymmetric encryption. Security strength of the design alternatives is determined from research. Feasibility criteria are determined by comparative analysis of alternatives. Economic implications and possible collision risk is determined from simulations that model the United State airspace over the Gulf of Mexico and part of the airspace under attack respectively. The ultimate goal of the project is to show that if ADS-B signals can be secured, the situational awareness can improve and the ARTCC can use information from this surveillance system to decrease the separation between aircraft and ultimately maximize the use of the United States airspace.

Shukla, S., Sadashivappa, G..  2014.  Secure multi-party computation protocol using asymmetric encryption. Computing for Sustainable Global Development (INDIACom), 2014 International Conference on. :780-785.

Privacy preservation is very essential in various real life applications such as medical science and financial analysis. This paper focuses on implementation of an asymmetric secure multi-party computation protocol using anonymization and public-key encryption where all parties have access to trusted third party (TTP) who (1) doesn't add any contribution to computation (2) doesn't know who is the owner of the input received (3) has large number of resources (4) decryption key is known to trusted third party (TTP) to get the actual input for computation of final result. In this environment, concern is to design a protocol which deploys TTP for computation. It is proposed that the protocol is very proficient (in terms of secure computation and individual privacy) for the parties than the other available protocols. The solution incorporates protocol using asymmetric encryption scheme where any party can encrypt a message with the public key but decryption can be done by only the possessor of the decryption key (private key). As the protocol works on asymmetric encryption and packetization it ensures following: (1) Confidentiality (Anonymity) (2) Security (3) Privacy (Data).