Visible to the public Biblio

Filters: Keyword is IoBT Security  [Clear All Filters]
2021-08-11
Nan, Satyaki, Brahma, Swastik, Kamhoua, Charles A., Njilla, Laurent L..  2020.  On Development of a Game‐Theoretic Model for Deception‐Based Security. Modeling and Design of Secure Internet of Things. :123–140.
This chapter presents a game‐theoretic model to analyze attack–defense scenarios that use fake nodes (computing devices) for deception under consideration of the system deploying defense resources to protect individual nodes in a cost‐effective manner. The developed model has important applications in the Internet of Battlefield Things (IoBT). Our game‐theoretic model illustrates how the concept of the Nash equilibrium can be used by the defender to intelligently choose which nodes should be used for performing a computation task while deceiving the attacker into expending resources for attacking fake nodes. Our model considers the fact that defense resources may become compromised under an attack and suggests that the defender, in a probabilistic manner, may utilize unprotected nodes for performing a computation while the attacker is deceived into attacking a node with defense resources installed. The chapter also presents a deception‐based strategy to protect a target node that can be accessed via a tree network. Numerical results provide insights into the strategic deception techniques presented in this chapter.
Chen, Juntao, Touati, Corinne, Zhu, Quanyan.  2020.  Optimal Secure Two-Layer IoT Network Design. IEEE Transactions on Control of Network Systems. 7:398–409.
With the remarkable growth of the Internet and communication technologies over the past few decades, Internet of Things (IoTs) is enabling the ubiquitous connectivity of heterogeneous physical devices with software, sensors, and actuators. IoT networks are naturally two layers with the cloud and cellular networks coexisting with the underlaid device-to-device communications. The connectivity of IoTs plays an important role in information dissemination for mission-critical and civilian applications. However, IoT communication networks are vulnerable to cyber attacks including the denial-of-service and jamming attacks, resulting in link removals in the IoT network. In this paper, we develop a heterogeneous IoT network design framework in which a network designer can add links to provide additional communication paths between two nodes or secure links against attacks by investing resources. By anticipating the strategic cyber attacks, we characterize the optimal design of the secure IoT network by first providing a lower bound on the number of links a secure network requires for a given budget of protected links, and then developing a method to construct networks that satisfy the heterogeneous network design specifications. Therefore, each layer of the designed heterogeneous IoT network is resistant to a predefined level of malicious attacks with minimum resources. Finally, we provide case studies on the Internet of Battlefield Things to corroborate and illustrate our obtained results.
Saputro, Nico, Tonyali, Samet, Aydeger, Abdullah, Akkaya, Kemal, Rahman, Mohammad A., Uluagac, Selcuk.  2020.  A Review of Moving Target Defense Mechanisms for Internet of Things Applications. Modeling and Design of Secure Internet of Things. :563–614.
The chapter presents a review of proactive Moving Target Defense (MTD) paradigm and investigates the feasibility and potential of specific MTD approaches for the resource‐constrained Internet of Things (IoT) applications. The aim is not only to provide taxonomy of various MTD approaches but also to advocate MTD techniques in the dynamic network domain in conjunction with the emerging Software Defined Networking (SDN) for more effective proactive IoT defense. The Internet of Battlefield Things (IoBT) and Industrial IoT (IIoT), which subject to more attacks, are identified as two critical IoT domains that can reap from the SDN‐based MTD approaches. Finally, the chapter also discusses potential future research challenges of the MTD approaches in the IoT domain.
Cordeiro, Renato, Gajaria, Dhruv, Limaye, Ankur, Adegbija, Tosiron, Karimian, Nima, Tehranipoor, Fatemeh.  2020.  ECG-Based Authentication Using Timing-Aware Domain-Specific Architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 39:3373–3384.
Electrocardiogram (ECG) biometric authentication (EBA) is a promising approach for human identification, particularly in consumer devices, due to the individualized, ubiquitous, and easily identifiable nature of ECG signals. Thus, computing architectures for EBA must be accurate, fast, energy efficient, and secure. In this article, first, we implement an EBA algorithm to achieve 100% accuracy in user authentication. Thereafter, we extensively analyze the algorithm to show the distinct variance in execution requirements and reveal the latency bottleneck across the algorithm's different steps. Based on our analysis, we propose a domain-specific architecture (DSA) to satisfy the execution requirements of the algorithm's different steps and minimize the latency bottleneck. We explore different variations of the DSA, including one that features the added benefit of ensuring constant timing across the different EBA steps, in order to mitigate the vulnerability to timing-based side-channel attacks. Our DSA improves the latency compared to a base ARM-based processor by up to 4.24×, while the constant timing DSA improves the latency by up to 19%. Also, our DSA improves the energy by up to 5.59×, as compared to the base processor.
Masuduzzaman, Md, Islam, Anik, Rahim, Tariq, Young Shin, Soo.  2020.  Blockchain-Assisted UAV-Employed Casualty Detection Scheme in Search and Rescue Mission in the Internet of Battlefield Things. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :412–416.
As the unmanned aerial vehicle (UAV) can play a vital role to collect information remotely in a military battlefield, researchers have shown great interest to reveal the domain of internet of battlefield Things (IoBT). In a rescue mission on a battlefield, UAV can collect data from different regions to identify the casualty of a soldier. One of the major challenges in IoBT is to identify the soldier in a complex environment. Image processing algorithm can be helpful if proper methodology can be applied to identify the victims. However, due to the limited hardware resources of a UAV, processing task can be handover to the nearby edge computing server for offloading the task as every second is very crucial in a battlefield. Furthermore, to avoid any third-party interaction in the network and to store the data securely, blockchain can help to create a trusted network as it forms a distributed ledger among the participants. This paper proposes a UAV assisted casualty detection scheme based on image processing algorithm where data is protected using blockchain technology. Result analysis has been conducted to identify the victims on the battlefield successfully using image processing algorithm and network issues like throughput and delay has been analyzed in details using public-key cryptography.
Hossain, Md. Sajjad, Bushra Islam, Fabliha, Ifeanyi Nwakanma, Cosmas, Min Lee, Jae, Kim, Dong-Seong.  2020.  Decentralized Latency-aware Edge Node Grouping with Fault Tolerance for Internet of Battlefield Things. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :420–423.
In this paper, our objective is to focus on the recent trend of military fields where they brought Internet of Things (IoT) to have better impact on the battlefield by improving the effectiveness and this is called Internet of Battlefield Things(IoBT). Due to the requirements of high computing capability and minimum response time with minimum fault tolerance this paper proposed a decentralized IoBT architecture. The proposed method can increase the reliability in the battlefield environment by searching the reliable nodes among all the edge nodes in the environment, and by adding the fault tolerance in the edge nodes will increase the effectiveness of overall battlefield scenario. This suggested fault tolerance approach is worth for decentralized mode to handle the issue of latency requirements and maintaining the task reliability of the battlefield. Our experimental results ensure the effectiveness of the proposed approach as well as enjoy the requirements of latency-aware military field while ensuring the overall reliability of the network.
Xi, Bowei, Kamhoua, Charles A..  2020.  A Hypergame‐Based Defense Strategy Toward Cyber Deception in Internet of Battlefield Things (IoBT). Modeling and Design of Secure Internet of Things. :59–77.
In this chapter, we develop a defense strategy to secure Internet of Battlefield Things (IoBT) based on a hypergame employing deceptive techniques. The hypergame is played multiple rounds. At each round, the adversary updates its perception of the attack graph and chooses the next node to compromise. The defender updates its perceived list of compromised nodes and actively feeds false signals to the adversary to create deception. The hypergame developed in this chapter provides an important theoretical framework for us to model how a cyberattack spreads on a network and the interaction between the adversary and the defender. It also provides quantitative metrics such as the time it takes the adversary to explore the network and compromise the target nodes. Based on these metrics, the defender can reboot the network devices and reset the network topology in time to clean up all potentially compromised devices and to protect the critical nodes. The hypergame provides useful guidance on how to create cyber deceptions so that the adversary cannot obtain information about the correct network topology and can be deterred from reaching the target critical nodes on a military network while it is in service.
Gaikwad, Nikhil B., Ugale, Hrishikesh, Keskar, Avinash, Shivaprakash, N. C..  2020.  The Internet-of-Battlefield-Things (IoBT)-Based Enemy Localization Using Soldiers Location and Gunshot Direction. IEEE Internet of Things Journal. 7:11725–11734.
The real-time information of enemy locations is capable to transform the outcome of combat operations. Such information gathered using connected soldiers on the Internet of Battlefield Things (IoBT) is highly beneficial to create situational awareness (SA) and to plan an effective war strategy. This article presents the novel enemy localization method that uses the soldier's own locations and their gunshot direction. The hardware prototype has been developed that uses a triangulation for an enemy localization in two soldiers and a single enemy scenario. 4.24±1.77 m of average localization error and ±4° of gunshot direction error has been observed during this prototype testing. This basic model is further extended using three-stage software simulation for multiple soldiers and multiple enemy scenarios with the necessary assumptions. The effective algorithm has been proposed, which differentiates between the ghost and true predictions by analyzing the groups of subsequent shooting intents (i.e., frames). Four different complex scenarios are tested in the first stage of the simulation, around three to six frames are required for the accurate enemy localization in the relatively simple cases, and nine frames are required for the complex cases. The random error within ±4° in gunshot direction is included in the second stage of the simulation which required almost double the number of frames for similar four cases. As the number of frames increases, the accuracy of the proposed algorithm improves and better ghost point elimination is observed. In the third stage, two conventional clustering algorithms are implemented to validate the presented work. The comparative analysis shows that the proposed algorithm is faster, computationally simple, consistent, and reliable compared with others. Detailed analysis of hardware and software results for various scenarios has been discussed in this article.
Lang, Weimin, Shan, Desheng, Zhang, Han, Wei, Shengyun, Yu, Liangqin.  2020.  IoBTChain: an Integration Framework of Internet of Battlefield Things (IoBT) and Blockchain. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:607–611.
As a typical representative of a new generation military information technology, the value and significance of Internet of Battlefield Things (IoBT) has been widely recognized by the world's military forces. At the same time, Internet of Battlefield Things (IoBT) is facing serious scalability and security challenges. This paper presents the basic concept and six-domain model of IoBT, explains the integration security framework of IoBT and blockchain. Furthermore, we design and build a novel IoT framework called IoBTChain based on blockchain and smart contracts, which adopts a credit-based resource management system to control the amount of resources that an IoBT device can obtain from a cloud server based on pre-defined priority rules, application types, and behavior history. We illustrate the deployment procedure of blockchain and smart contracts, the device registration procedure on blockchain, the IoBT behavior regulation workflow and the pricing-based resource allocation algorithm.
2021-02-22
Doku, R., Rawat, D. B., Garuba, M., Njilla, L..  2020.  Fusion of Named Data Networking and Blockchain for Resilient Internet-of-Battlefield-Things. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Named Data Network's (NDN) data-centric approach makes it a suitable solution in a networking scenario where there are connectivity issues as a result of the dynamism of the network. Coupling of this ability with the blockchain's well-documented immutable trustworthy-distributed ledger feature, the union of blockchain and NDN in an Internet-of-Battlefield-Things (IoBT) setting could prove to be the ideal alliance that would guarantee data exchanged in an IoBT environment is trusted and less susceptible to cyber-attacks and packet losses. Various blockchain technologies, however, require that each node has a ledger that stores information or transactions in a chain of blocks. This poses an issue as nodes in an IoBT setting have varying computing and storage resources. Moreover, most of the nodes in the IoT/IoBT network are plagued with limited resources. As such, there needs to be an approach that ensures that the limited resources of these nodes are efficiently utilized. In this paper, we investigate an approach that merges blockchain and NDN to efficiently utilize the resources of these resource-constrained nodes by only storing relevant information on each node's ledger. Furthermore, we propose a sharding technique called an Interest Group and introduce a novel consensus mechanism called Proof of Common Interest. Performance of the proposed approach is evaluated using numerical results.