Biblio
Cloud computing systems (CCSs) enable the sharing of physical computing resources through virtualisation, where a group of virtual machines (VMs) can share the same physical resources of a given machine. However, this sharing can lead to a so-called side-channel attack (SCA), widely recognised as a potential threat to CCSs. Specifically, malicious VMs can capture information from (target) VMs, i.e., those with sensitive information, by merely co-located with them on the same physical machine. As such, a VM allocation algorithm needs to be cognizant of this issue and attempts to allocate the malicious and target VMs onto different machines, i.e., the allocation algorithm needs to be security-aware. This paper investigates the allocation patterns of VM allocation algorithms that are more likely to lead to a secure allocation. A driving objective is to reduce the number of VM migrations during allocation. We also propose a graph-based secure VMs allocation algorithm (GbSRS) to minimise SCA threats. Our results show that algorithms following a stacking-based behaviour are more likely to produce secure VMs allocation than those following spreading or random behaviours.
Software vulnerabilities are weaknesses in software systems that can have serious consequences when exploited. Examples of side effects include unauthorized authentication, data breaches, and financial losses. Due to the nature of the software industry, companies are increasingly pressured to deploy software as quickly as possible, leading to a large number of undetected software vulnerabilities. Static code analysis, with the support of Static Analysis Tools (SATs), can generate security alerts that highlight potential vulnerabilities in an application's source code. Software Metrics (SMs) have also been used to predict software vulnerabilities, usually with the support of Machine Learning (ML) classification algorithms. Several datasets are available to support the development of improved software vulnerability detection techniques. However, they suffer from the same issues: they are either outdated or use a single type of information. In this paper, we present a methodology for collecting software vulnerabilities from known vulnerability databases and enhancing them with static information (namely SAT alerts and SMs). The proposed methodology aims to define a mechanism capable of more easily updating the collected data.
In new technological world pervasive computing plays the important role in data computing and communication. The pervasive computing provides the mobile environment for decentralized computational services at anywhere, anytime at any context and location. Pervasive computing is flexible and makes portable devices and computing surrounded us as part of our daily life. Devices like Laptop, Smartphones, PDAs, and any other portable devices can constitute the pervasive environment. These devices in pervasive environments are worldwide and can receive various communications including audio visual services. The users and the system in this pervasive environment face the challenges of user trust, data privacy and user and device node identity. To give the feasible determination for these challenges. This paper aims to propose a dynamic learning in pervasive computing environment refer the challenges proposed efficient security model (ESM) for trustworthy and untrustworthy attackers. ESM model also compared with existing generic models; it also provides better accuracy rate than existing models.
Keystroke dynamics is a behavioural biometric form of authentication based on the inherent typing behaviour of an individual. While this technique is gaining traction, protecting the privacy of the users is of utmost importance. Fully Homomorphic Encryption is a technique that allows performing computation on encrypted data, which enables processing of sensitive data in an untrusted environment. FHE is also known to be “future-proof” since it is a lattice-based cryptosystem that is regarded as quantum-safe. It has seen significant performance improvements over the years with substantially increased developer-friendly tools. We propose a neural network for keystroke analysis trained using differential privacy to speed up training while preserving privacy and predicting on encrypted data using FHE to keep the users' privacy intact while offering sufficient usability.
With the development of network, network security has become a topic of increasing concern. Recent years, machine learning technology has become an effective means of network intrusion detection. However, machine learning technology requires a large amount of data for training, and training data often contains privacy information, which brings a great risk of privacy leakage. At present, there are few researches on data privacy protection in the field of intrusion detection. Regarding the issue of privacy and security, we combine differential privacy and machine learning algorithms, including One-class Support Vector Machine (OCSVM) and Local Outlier Factor(LOF), to propose an hybrid intrusion detection system (IDS) with privacy protection. We add Laplacian noise to the original network intrusion detection data set to get differential privacy data sets with different privacy budgets, and proposed a hybrid IDS model based on machine learning to verify their utility. Experiments show that while protecting data privacy, the hybrid IDS can achieve detection accuracy comparable to traditional machine learning algorithms.
Noise has been used as a way of protecting privacy of users in public datasets for many decades now. Differential privacy is a new standard to add noise, so that user privacy is protected. When this technique is applied for a single end user data, it's called local differential privacy. In this study, we evaluate the effects of adding noise to generate randomized responses on machine learning models. We generate randomized responses using Gaussian, Laplacian noise on singular end user data as well as correlated end user data. Finally, we provide results that we have observed on a few data sets for various machine learning use cases.
Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.