Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.
2021.
A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
ERÇİN, Mehmet Serhan, YOLAÇAN, Esra Nergis.
2021.
A system for redicting SQLi and XSS Attacks. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :155—160.
In this study, it is aimed to reduce False-Alarm levels and increase the correct detection rate in order to reduce this uncertainty. Within the scope of the study, 13157 SQLi and XSS type malicious and 10000 normal HTTP Requests were used. All HTTP requests were received from the same web server, and it was observed that normal requests and malicious requests were close to each other. In this study, a novel approach is presented via both digitization and expressing the data with words in the data preprocessing stages. LSTM, MLP, CNN, GNB, SVM, KNN, DT, RF algorithms were used for classification and the results were evaluated with accuracy, precision, recall and F1-score metrics. As a contribution of this study, we can clearly express the following inferences. Each payload even if it seems different which has the same impact maybe that we can clearly view after the preprocessing phase. After preprocessing we are calculating euclidean distances which brings and gives us the relativity between expressions. When we put this relativity as an entry data to machine learning and/or deep learning models, perhaps we can understand the benign request or the attack vector difference.
Kanca, Ali Melih, Sagiroglu, Seref.
2021.
Sharing Cyber Threat Intelligence and Collaboration. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :167—172.
With the developing technology, cyber threats are developing rapidly, and the motivations and targets of cyber attackers are changing. In order to combat these threats, cyber threat information that provides information about the threats and the characteristics of the attackers is needed. In addition, it is of great importance to cooperate with other stakeholders and share experiences so that more information about threat information can be obtained and necessary measures can be taken quickly. In this context, in this study, it is stated that the establishment of a cooperation mechanism in which cyber threat information is shared will contribute to the cyber security capacity of organizations. And using the Zack Information Gap analysis, the deficiency of organizations in sharing threat information were determined and suggestions were presented. In addition, there are cooperation mechanisms in the USA and the EU where cyber threat information is shared, and it has been evaluated that it would be beneficial to establish a similar mechanism in our country. Thus, it is evaluated that advanced or unpredictable cyber threats can be detected, the cyber security capacities of all stakeholders will increase and a safer cyber ecosystem will be created. In addition, it is possible to collect, store, distribute and share information about the analysis of cyber incidents and malware analysis, to improve existing cyber security products or to encourage new product development, by carrying out joint R&D studies among the stakeholders to ensure that domestic and national cyber security products can be developed. It is predicted that new analysis methods can be developed by using technologies such as artificial intelligence and machine learning.
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.
2021.
Optimization of Encrypted Communication Length Based on Generative Adversarial Network. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). :165—170.
With the development of artificial intelligence and cryptography, intelligent cryptography will be the trend of encrypted communications in the future. Abadi designed an encrypted communication model based on a generative adversarial network, which can communicate securely when the adversary knows the ciphertext. The communication party and the adversary fight against each other to continuously improve their own capabilities to achieve a state of secure communication. However, this model can only have a better communication effect under the 16 bits communication length, and cannot adapt to the length of modern encrypted communication. Combine the neural network structure in DCGAN to optimize the neural network of the original model, and at the same time increase the batch normalization process, and optimize the loss function in the original model. Experiments show that under the condition of the maximum 2048-bit communication length, the decryption success rate of communication reaches about 0.97, while ensuring that the adversary’s guess error rate is about 0.95, and the training speed is greatly increased to keep it below 5000 steps, ensuring safety and efficiency Communication.