Visible to the public Biblio

Filters: Keyword is distribution networks  [Clear All Filters]
2023-05-26
Wang, Changjiang, Yu, Chutian, Yin, Xunhu, Zhang, Lijun, Yuan, Xiang, Fan, Mingxia.  2022.  An Optimal Planning Model for Cyber-physical Active Distribution System Considering the Reliability Requirements. 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). :1476—1480.
Since the cyber and physical layers in the distribution system are deeply integrated, the traditional distribution system has gradually developed into the cyber-physical distribution system (CPDS), and the failures of the cyber layer will affect the reliable and safe operation of the whole distribution system. Therefore, this paper proposes an CPDS planning method considering the reliability of the cyber-physical system. First, the reliability evaluation model of CPDS is proposed. Specifically, the functional reliability model of the cyber layer is introduced, based on which the physical equipment reliability model is further investigated. Second, an optimal planning model of CPDS considering cyber-physical random failures is developed, which is solved using the Monte Carlo Simulation technique. The proposed model is tested on the modified IEEE 33-node distribution system, and the results demonstrate the effectiveness of the proposed method.
2023-05-11
Zhu, Lei, Huang, He, Gao, Song, Han, Jun, Cai, Chao.  2022.  False Data Injection Attack Detection Method Based on Residual Distribution of State Estimation. 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :724–728.
While acquiring precise and intelligent state sensing and control capabilities, the cyber physical power system is constantly exposed to the potential cyber-attack threat. False data injection (FDI) attack attempts to disrupt the normal operation of the power system through the coupling of cyber side and physical side. To deal with the situation that stealthy FDI attack can bypass the bad data detection and thus trigger false commands, a system feature extraction method in state estimation is proposed, and the corresponding FDI attack detection method is presented. Based on the principles of state estimation and stealthy FDI attack, we analyze the impacts of FDI attack on measurement residual. Gaussian fitting method is used to extract the characteristic parameters of residual distribution as the system feature, and attack detection is implemented in a sliding time window by comparison. Simulation results prove that the proposed attack detection method is effectiveness and efficiency.
ISSN: 2642-6633
2023-03-31
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
2023-01-20
Dey, Arnab, Chakraborty, Soham, Salapaka, Murti V..  2022.  An End-to-End Cyber-Physical Infrastructure for Smart Grid Control and Monitoring. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
In this article, we propose a generic cyber-physical framework, developed in our laboratory, for smart grid control and monitoring in real-time. Our framework is composed of four key elements: (1) system layer which embeds a physical or emulated power system network, (2) data analysis layer to execute real-time data-driven grid analysis algorithms, (3) backend layer with a generic data storage framework which supports multiple databases with functionally different architectures, and (4) visualization layer where multiple customized or commercially available user interfaces can be deployed concurrently for grid control and monitoring. These four layers are interlinked via bidirectional communication channels. Such a flexible and scalable framework provides a cohesive environment to enhance smart grid situational awareness. We demonstrate the utility of our proposed architecture with several case studies where we estimate a modified IEEE-33 bus distribution network topology entirely from synchrophasor measurements, without any prior knowledge of the grid network, and render the same on visualization platform. Three demonstrations are included with single and multiple system operators having complete and partial measurements.
Cheng, Xi, Liang, Yafeng, Qiu, Jianhong, Zhao, XiaoLi, Ma, Lihong.  2022.  Risk Assessment Method of Microgrid System Based on Random Matrix Theory. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:705—709.
In view of the problems that the existing power grid risk assessment mainly depends on the data fusion of decision-making level, which has strong subjectivity and less effective information, this paper proposes a risk assessment method of microgrid system based on random matrix theory. Firstly, the time series data of multiple sensors are constructed into a high-dimensional matrix according to the different parameter types and nodes; Then, based on random matrix theory and sliding time window processing, the average spectral radius sequence is calculated to characterize the state of microgrid system. Finally, an example is given to verify the effectiveness of the method.
2022-05-05
Li, Luo, Li, Wen, Li, Xing.  2021.  A Power Grid Planning Method Considering Dynamic Limit of Renewable Energy Security Constraints. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). :1101—1105.

This paper puts forward a dynamic reduction method of renewable energy based on N-1 safety standard of power system, which is suitable for high-voltage distribution network and can reduce the abandoned amount of renewable energy to an ideal level. On the basis of AC sensitivity coefficient, the optimization method of distribution factor suitable for single line or multi-line disconnection is proposed. Finally, taking an actual high-voltage distribution network in Germany as an example, the simulation results show that the proposed method can effectively limit the line load, and can greatly reduce the line load with less RES reduction.

2022-04-18
Li, Jie, Liu, Hui, Zhang, Yinbao, Su, Guojie, Wang, Zezhong.  2021.  Artificial Intelligence Assistant Decision-Making Method for Main Amp; Distribution Power Grid Integration Based on Deep Deterministic Network. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–5.
This paper studies the technology of generating DDPG (deep deterministic policy gradient) by using the deep dual network and experience pool network structure, and puts forward the sampling strategy gradient algorithm to randomly select actions according to the learned strategies (action distribution) in the continuous action space, based on the dispatching control system of the power dispatching control center of a super city power grid, According to the actual characteristics and operation needs of urban power grid, The developed refined artificial intelligence on-line security analysis and emergency response plan intelligent generation function realize the emergency response auxiliary decision-making intelligent generation function. According to the hidden danger of overload and overload found in the online safety analysis, the relevant load lines of the equipment are searched automatically. Through the topology automatic analysis, the load transfer mode is searched to eliminate or reduce the overload or overload of the equipment. For a variety of load transfer modes, the evaluation index of the scheme is established, and the optimal load transfer mode is intelligently selected. Based on the D5000 system of Metropolitan power grid, a multi-objective and multi resource coordinated security risk decision-making assistant system is implemented, which provides integrated security early warning and decision support for the main network and distribution network of city power grid. The intelligent level of power grid dispatching management and dispatching operation is improved. The state reality network can analyze the joint state observations from the action reality network, and the state estimation network uses the actor action as the input. In the continuous action space task, DDPG is better than dqn and its convergence speed is faster.
2022-03-14
Correa, Mauricio, GOMEZ, Tomás, Cossent, Rafael.  2021.  Local Flexibility Mechanisms for Electricity Distribution Through Regulatory Sandboxes: International Review and a Proposal for Spain. 2021 IEEE Madrid PowerTech. :1—6.
The EU goal of achieving carbon neutrality by 2050 will require profound changes in the electricity supply chain. In this context, Distribution System Operators (DSOs) are expected to adopt solutions to efficiently integrate distributed energy resources (DER), including the implementation of local flexibility mechanisms. Thus, DSOs would procure services from DER like distributed generation, demand response, or storage to support grid expansion, attain significant cost savings, and swifter DER integration. However, the use of flexibility mechanisms still faces barriers posed by national regulation. Regulatory sandboxes may be used to overcome this gap by enabling and supporting the development of local flexibility mechanisms. This paper performs an international review of four leading countries in the use of sandbox and flexibility, identifies best practices, and, based on the lessons learned, provides recommendations to implement local flexibility mechanisms for DSOs in Spain under regulatory sandboxes
2021-11-29
Gao, Hongjun, Liu, Youbo, Liu, Zhenyu, Xu, Song, Wang, Renjun, Xiang, Enmin, Yang, Jie, Qi, Mohan, Zhao, Yinbo, Pan, Hongjin et al..  2020.  Optimal Planning of Distribution Network Based on K-Means Clustering. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :2135–2139.
The reform of electricity marketization has bred multiple market agents. In order to maximize the total social benefits on the premise of ensuring the security of the system and taking into account the interests of multiple market agents, a bi-level optimal allocation model of distribution network with multiple agents participating is proposed. The upper level model considers the economic benefits of energy and service providers, which are mainly distributed power investors, energy storage operators and distribution companies. The lower level model considers end-user side economy and actively responds to demand management to ensure the highest user satisfaction. The K-means multi scenario analysis method is used to describe the time series characteristics of wind power, photovoltaic power and load. The particle swarm optimization (PSO) algorithm is used to solve the bi-level model, and IEEE33 node system is used to verify that the model can effectively consider the interests of multiple agents while ensuring the security of the system.
2021-09-07
Liu, Shu, Tao, Xingyu, Hu, Wenmin.  2020.  Planning Method of Transportation and Power Coupled System Based on Road Expansion Model. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :361–366.
In this paper, a planning method of transportation-power coupled system based on road expansion model is proposed. First of all, based on the Wardrop equilibrium state, the traffic flow is distributed, to build the road expansion model and complete the traffic network modeling. It is assumed that the road charging demand is directly proportional to the road traffic flow, and the charging facilities will cause a certain degree of congestion on the road. This mutual influence relationship to establish a coupling system of transportation network and power network is used for the planning. In the planning method, the decision variables include the location of charging facilities, the setting of energy storage systems and the road expansion scheme. The planning goal is to minimize the investment cost and operation cost. The CPLEX solver is used to solve the mixed integer nonlinear programming problem. Finally, the simulation analysis is carried out to verify the validity and feasibility of the planning method, which can comprehensively consider the road expansion cost and travel time cost, taking a coupled system of 5-node traffic system and IEEE14 node distribution network as example.
2021-04-09
Ravikumar, G., Singh, A., Babu, J. R., A, A. Moataz, Govindarasu, M..  2020.  D-IDS for Cyber-Physical DER Modbus System - Architecture, Modeling, Testbed-based Evaluation. 2020 Resilience Week (RWS). :153—159.
Increasing penetration of distributed energy resources (DERs) in distribution networks expands the cyberattack surface. Moreover, the widely used standard protocols for communicating DER inverters such as Modbus is more vulnerable to data-integrity attacks and denial of service (DoS) attacks because of its native clear-text packet format. This paper proposes a distributed intrusion detection system (D-IDS) architecture and algorithms for detecting anomalies on the DER Modbus communication. We devised a model-based approach to define physics-based threshold bands for analog data points and transaction-based threshold bands for both the analog and discrete data points. The proposed IDS algorithm uses the model- based approach to develop Modbus-specific IDS rule sets, which can enhance the detection accuracy of the anomalies either by data-integrity attacks or maloperation on cyber-physical DER Modbus devices. Further, the IDS algorithm autogenerates the Modbus-specific IDS rulesets in compliance with various open- source IDS rule syntax formats, such as Snort and Suricata, for seamless integration and mitigation of semantic/syntax errors in the development and production environment. We considered the IEEE 13-bus distribution grid, including DERs, as a case study. We conducted various DoS type attacks and data-integrity attacks on the hardware-in-the-loop (HIL) CPS DER testbed at ISU to evaluate the proposed D-IDS. Consequently, we computed the performance metrics such as IDS detection accuracy, IDS detection rate, and end-to-end latency. The results demonstrated that 100% detection accuracy, 100% detection rate for 60k DoS packets, 99.96% detection rate for 80k DoS packets, and 0.25 ms end-to-end latency between DERs to Control Center.
2021-03-29
Dai, Q., Shi, L..  2020.  A Game-Theoretic Analysis of Cyber Attack-Mitigation in Centralized Feeder Automation System. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The intelligent electronic devices widely deployed across the distribution network are inevitably making the feeder automation (FA) system more vulnerable to cyber-attacks, which would lead to disastrous socio-economic impacts. This paper proposes a three-stage game-theoretic framework that the defender allocates limited security resources to minimize the economic impacts on FA system while the attacker deploys limited attack resources to maximize the corresponding impacts. Meanwhile, the probability of successful attack is calculated based on the Bayesian attack graph, and a fault-tolerant location technique for centralized FA system is elaborately considered during analysis. The proposed game-theoretic framework is converted into a two-level zero-sum game model and solved by the particle swarm optimization (PSO) combined with a generalized reduced gradient algorithm. Finally, the proposed model is validated on distribution network for RBTS bus 2.
2021-02-16
Poudel, S., Sun, H., Nikovski, D., Zhang, J..  2020.  Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
In this paper, we propose a novel method to obtain the damage model (connectivity) of a power distribution system (PDS) based on distributed consensus algorithm. The measurement and sensing units in the distribution network are modeled as an agent with limited communication capability that exchanges the information (switch status) to reach an agreement in a consensus algorithm. Besides, a communication graph is designed for agents to run the consensus algorithm which is efficient and robust during the disaster event. Agents can dynamically communicate with the other agent based on available links that are established and solve the distributed consensus algorithm quickly to come up with the correct topology of PDS. Numerical simulations are performed to demonstrate the effectiveness of the proposed approach with the help of an IEEE 123-node test case with 3 different sub-graphs.
2020-05-22
Jaiswal, Supriya, Ballal, Makarand Sudhakar.  2019.  A Novel Online Technique for Fixing the Accountability of Harmonic Injector in Distribution Network. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1—7.

Harmonic distortions come into existence in the power system not only due to nonlinear loads of consumers but also due to custom power devices used by power utilities. These distortions are harmful to the power networks as these produce over heating of appliances, reduction in their life expectancy, increment in electricity bill, false tripping, etc. This paper presents an effective, simple and direct approach to identify the problematic cause either consumer load or utility source or both responsible for harmonics injection in the power system. This technique does not require mathematical model, historical data and expert knowledge. The online methodology is developed in the laboratory and tested for different polluted loads and source conditions. Experimental results are found satisfactory. This proposed technique has substantial potential to determine the problematic cause without any power interruption by plug and play operation just like CCTV.

2020-03-02
Zhao, Min, Li, Shunxin, Xiao, Dong, Zhao, Guoliang, Li, Bo, Liu, Li, Chen, Xiangyu, Yang, Min.  2019.  Consumption Ability Estimation of Distribution System Interconnected with Microgrids. 2019 IEEE International Conference on Energy Internet (ICEI). :345–350.
With fast development of distributed generation, storages and control techniques, a growing number of microgrids are interconnected with distribution networks. Microgrid capacity that a local distribution system can afford, is important to distribution network planning and microgrids well-organized integration. Therefore, this paper focuses on estimating consumption ability of distribution system interconnected with microgrids. The method to judge rationality of microgrids access plan is put forward, and an index system covering operation security, power quality and energy management is proposed. Consumption ability estimation procedure based on rationality evaluation and interactions is built up then, and requirements on multi-scenario simulation are presented. Case study on a practical distribution system design with multi-microgrids guarantees the validity and reasonableness of the proposed method and process. The results also indicate construction and reinforcement directions for the distribution network.
2020-02-10
Niddodi, Chaitra, Lin, Shanny, Mohan, Sibin, Zhu, Hao.  2019.  Secure Integration of Electric Vehicles with the Power Grid. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This paper focuses on the secure integration of distributed energy resources (DERs), especially pluggable electric vehicles (EVs), with the power grid. We consider the vehicle-to-grid (V2G) system where EVs are connected to the power grid through an `aggregator' In this paper, we propose a novel Cyber-Physical Anomaly Detection Engine that monitors system behavior and detects anomalies almost instantaneously (worst case inspection time for a packet is 0.165 seconds1). This detection engine ensures that the critical power grid component (viz., aggregator) remains secure by monitoring (a) cyber messages for various state changes and data constraints along with (b) power data on the V2G cyber network using power measurements from sensors on the physical/power distribution network. Since the V2G system is time-sensitive, the anomaly detection engine also monitors the timing requirements of the protocol messages to enhance the safety of the aggregator. To the best of our knowledge, this is the first piece of work that combines (a) the EV charging/discharging protocols, the (b) cyber network and (c) power measurements from physical network to detect intrusions in the EV to power grid system.1Minimum latency on V2G network is 2 seconds.
2017-12-28
Amin, S..  2016.  Security games on infrastructure networks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–4.

The theory of robust control models the controller-disturbance interaction as a game where disturbance is nonstrategic. The proviso of a deliberately malicious (strategic) attacker should be considered to increase the robustness of infrastructure systems. This has become especially important since many IT systems supporting critical functionalities are vulnerable to exploits by attackers. While the usefulness of game theory methods for modeling cyber-security is well established in the literature, new game theoretic models of cyber-physical security are needed for deriving useful insights on "optimal" attack plans and defender responses, both in terms of allocation of resources and operational strategies of these players. This whitepaper presents some progress and challenges in using game-theoretic models for security of infrastructure networks. Main insights from the following models are presented: (i) Network security game on flow networks under strategic edge disruptions; (ii) Interdiction problem on distribution networks under node disruptions; (iii) Inspection game to monitor commercial non-technical losses (e.g. energy diversion); and (iv) Interdependent security game of networked control systems under communication failures. These models can be used to analyze the attacker-defender interactions in a class of cyber-physical security scenarios.

2015-05-05
Linda, O., Wijayasekara, D., Manic, M., McQueen, M..  2014.  Optimal placement of Phasor Measurement Units in power grids using Memetic Algorithms. Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. :2035-2041.

Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.