Visible to the public Biblio

Filters: Keyword is data plane  [Clear All Filters]
2023-07-12
Salman, Fatema, Jedidi, Ahmed.  2022.  Trust-Aware Security system for Dynamic Southbound Communication in Software Defined Network. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :93—97.
The vast proliferation of the connected devices makes the operation of the traditional networks so complex and drops the network performance, particularly, failure cases. In fact, a novel solution is proposed to enable the management of the network resources and services named software defined network (SDN). SDN splits the data plane and the control plane by centralizing all the control plane on one common platform. Further, SDN makes the control plane programmable by offering high flexibility for the network management and monitoring mostly in failure cases. However, the main challenge in SDN is security that is presented as the first barrier for its development. Security in SDN is presented at various levels and forms, particularly, the communication between the data plane and control plane that presents a weak point in SDN framework. In this article, we suggest a new security framework focused on the combination between the trust and awareness concepts (TAS-SDN) for a dynamic southbound communication SDN. Further, TAS-SDN uses trust levels to establish a secure communication between the control plane and data plane. As a result, we discuss the implementation and the performance of TAS-SDN which presents a promote security solution in terms of time execution, complexity and scalability for SDN.
2023-02-17
Sharma, Pradeep Kumar, Kumar, Brijesh, Tyagi, S.S.  2022.  STADS: Security Threats Assessment and Diagnostic System in Software Defined Networking (SDN). 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:744–751.
Since the advent of the Software Defined Networking (SDN) in 2011 and formation of Open Networking Foundation (ONF), SDN inspired projects have emerged in various fields of computer networks. Almost all the networking organizations are working on their products to be supported by SDN concept e.g. openflow. SDN has provided a great flexibility and agility in the networks by application specific control functions with centralized controller, but it does not provide security guarantees for security vulnerabilities inside applications, data plane and controller platform. As SDN can also use third party applications, an infected application can be distributed in the network and SDN based systems may be easily collapsed. In this paper, a security threats assessment model has been presented which highlights the critical areas with security requirements in SDN. Based on threat assessment model a proposed Security Threats Assessment and Diagnostic System (STADS) is presented for establishing a reliable SDN framework. The proposed STADS detects and diagnose various threats based on specified policy mechanism when different components of SDN communicate with controller to fulfil network requirements. Mininet network emulator with Ryu controller has been used for implementation and analysis.
2022-01-25
Uddin Nadim, Taef, Foysal.  2021.  Towards Autonomic Entropy Based Approach for DDoS Attack Detection and Mitigation Using Software Defined Networking. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1—5.
Software defined networking (SDN) architecture frame- work eases the work of the network administrators by separating the data plane from the control plane. This provides a programmable interface for applications development related to security and management. The centralized logical controller provides more control over the total network, which has complete network visibility. These SDN advantages expose the network to vulnerabilities and the impact of the attacks is much severe when compared to traditional networks, where the network devices have protection from the attacks and limits the occurrence of attacks. In this paper, we proposed an entropy based algorithm in SDN to detect as well as stopping distributed denial of service (DDoS) attacks on the servers or clouds or hosts. Firstly, there explored various attacks that can be launched on SDN at different layers. Basically DDoS is one kind of denial of service attack in which an attacker uses multiple distributed sources for attacking a particular server. Every network in a system has an entropy and an increase in the randomness of probability causes entropy to decrease. In comparison with previous entropy based approaches this approach has higher performance in distinguishing legal and illegal traffics and blocking illegal traffic paths. Linux OS and Mininet Simulator along with POX controller are used to validate the proposed approach. By conducting pervasive simulation along with theoretical analysis this method can definitely detect and stop DDoS attacks automatically.
2021-03-29
Liao, S., Wu, J., Li, J., Bashir, A. K..  2020.  Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :231–236.
Software Defined Networking (SDN) focus on the isolation of control plane and data plane, greatly enhancing the network's support for heterogeneity and flexibility. However, although the programmable network greatly improves the performance of all aspects of the network, flexible load balancing across controllers still challenges the current SDN architecture. Complex application scenarios lead to flexible and changeable communication requirements, making it difficult to guarantee the Quality of Service (QoS) for SDN users. To address this issue, this paper proposes a paradigm that uses blockchain to incentive safe load balancing for multiple controllers. We proposed a controller consortium blockchain for secure and efficient load balancing of multi-controllers, which includes a new cryptographic currency balance coin and a novel consensus mechanism Proof-of-Balance (PoB). In addition, we have designed a novel game theory-based incentive mechanism to incentive controllers with tight communication resources to offload tasks to idle controllers. The security analysis and performance simulation results indicate the superiority and effectiveness of the proposed scheme.
2021-03-16
Freitas, M. Silva, Oliveira, R., Molinos, D., Melo, J., Rosa, P. Frosi, Silva, F. de Oliveira.  2020.  ConForm: In-band Control Plane Formation Protocol to SDN-Based Networks. 2020 International Conference on Information Networking (ICOIN). :574—579.

Although OpenFlow-based SDN networks make it easier to design and test new protocols, when you think of clean slate architectures, their use is quite limited because the parameterization of its flows resides primarily in TCP/IP protocols. Besides, despite the many benefits that SDN offers, some aspects have not yet been adequately addressed, such as management plane activities, network startup, and options for connecting the data plane to the control plane. Based on these issues and limitations, this work presents a bootstrap protocol for SDN-based networks, which allows, beyond the network topology discovery, automatic configuration of an inband control plane. The protocol is designed to act only on layer two, in an autonomous, distributed and deterministic way, with low overhead and has the intent to be the basement for the implementation of other management plane related activities. A formal specification of the protocol is provided. In addition, an analytical model was created to preview the number of required messages to establish the control plane. According to this model, the proposed protocol presents less overhead than similar de-facto protocols used to topology discovery in SDN networks.

2021-02-16
Wang, L., Liu, Y..  2020.  A DDoS Attack Detection Method Based on Information Entropy and Deep Learning in SDN. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1084—1088.
Software Defined Networking (SDN) decouples the control plane and the data plane and solves the difficulty of new services deployment. However, the threat of a single point of failure is also introduced at the same time. The attacker can launch DDoS attacks towards the controller through switches. In this paper, a DDoS attack detection method based on information entropy and deep learning is proposed. Firstly, suspicious traffic can be inspected through information entropy detection by the controller. Then, fine-grained packet-based detection is executed by the convolutional neural network (CNN) model to distinguish between normal traffic and attack traffic. Finally, the controller performs the defense strategy to intercept the attack. The experiments indicate that the accuracy of this method reaches 98.98%, which has the potential to detect DDoS attack traffic effectively in the SDN environment.
Zhai, P., Song, Y., Zhu, X., Cao, L., Zhang, J., Yang, C..  2020.  Distributed Denial of Service Defense in Software Defined Network Using OpenFlow. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1274—1279.
Software Defined Network (SDN) is a new type of network architecture solution, and its innovation lies in decoupling traditional network system into a control plane, a data plane, and an application plane. It logically implements centralized control and management of the network, and SDN is considered to represent the development trend of the network in the future. However, SDN still faces many security challenges. Currently, the number of insecure devices is huge. Distributed Denial of Service (DDoS) attacks are one of the major network security threats.This paper focuses on the detection and mitigation of DDoS attacks in SDN. Firstly, we explore a solution to detect DDoS using Renyi entropy, and we use exponentially weighted moving average algorithm to set a dynamic threshold to adapt to changes of the network. Second, to mitigate this threat, we analyze the historical behavior of each source IP address and score it to determine the malicious source IP address, and use OpenFlow protocol to block attack source.The experimental results show that the scheme studied in this paper can effectively detect and mitigate DDoS attacks.
2021-01-11
Malik, A., Fréin, R. de, Al-Zeyadi, M., Andreu-Perez, J..  2020.  Intelligent SDN Traffic Classification Using Deep Learning: Deep-SDN. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :184–189.
Accurate traffic classification is fundamentally important for various network activities such as fine-grained network management and resource utilisation. Port-based approaches, deep packet inspection and machine learning are widely used techniques to classify and analyze network traffic flows. However, over the past several years, the growth of Internet traffic has been explosive due to the greatly increased number of Internet users. Therefore, both port-based and deep packet inspection approaches have become inefficient due to the exponential growth of the Internet applications that incurs high computational cost. The emerging paradigm of software-defined networking has reshaped the network architecture by detaching the control plane from the data plane to result in a centralised network controller that maintains a global view over the whole network on its domain. In this paper, we propose a new deep learning model for software-defined networks that can accurately identify a wide range of traffic applications in a short time, called Deep-SDN. The performance of the proposed model was compared against the state-of-the-art and better results were reported in terms of accuracy, precision, recall, and f-measure. It has been found that 96% as an overall accuracy can be achieved with the proposed model. Based on the obtained results, some further directions are suggested towards achieving further advances in this research area.
2020-10-05
Chen, Jen-Jee, Tsai, Meng-Hsun, Zhao, Liqiang, Chang, Wei-Chiao, Lin, Yu-Hsiang, Zhou, Qianwen, Lu, Yu-Zhang, Tsai, Jia-Ling, Cai, Yun-Zhan.  2019.  Realizing Dynamic Network Slice Resource Management based on SDN networks. 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA). :120–125.
It is expected that the concept of Internet of everything will be realized in 2020 because of the coming of the 5G wireless communication technology. Internet of Things (IoT) services in various fields require different types of network service features, such as mobility, security, bandwidth, latency, reliability and control strategies. In order to solve the complex requirements and provide customized services, a new network architecture is needed. To change the traditional control mode used in the traditional network architecture, the Software Defined Network (SDN) is proposed. First, SDN divides the network into the Control Plane and Data Plane and then delegates the network management authority to the controller of the control layer. This allows centralized control of connections of a large number of devices. Second, SDN can help realizing the network slicing in the aspect of network layer. With the network slicing technology proposed by 5G, it can cut the 5G network out of multiple virtual networks and each virtual network is to support the needs of diverse users. In this work, we design and develop a network slicing framework. The contributions of this article are two folds. First, through SDN technology, we develop to provide the corresponding end-to-end (E2E) network slicing for IoT applications with different requirements. Second, we develop a dynamic network slice resource scheduling and management method based on SDN to meet the services' requirements with time-varying characteristics. This is usually observed in streaming and services with bursty traffic. A prototyping system is completed. The effectiveness of the system is demonstrated by using an electronic fence application as a use case.
2020-06-29
Kaljic, Enio, Maric, Almir, Njemcevic, Pamela.  2019.  DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture. 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT). :1–6.
The application of the concept of software-defined networks (SDN) has, on the one hand, led to the simplification and reduction of switches price, and on the other hand, has created a significant number of problems related to the security of the SDN network. In several studies was noted that these problems are related to the lack of flexibility and programmability of the data plane, which is likely first to suffer potential denial-of-service (DoS) attacks. One possible way to overcome this problem is to increase the flexibility of the data plane by increasing the depth of programmability of the packet-switching nodes below the level of flow table management. Therefore, this paper investigates the opportunity of using the architecture of deeply programmable packet-switching nodes (DPPSN) in the implementation of a firewall. Then, an architectural model of the firewall based on a hybrid FPGA/CPU data plane architecture has been proposed and implemented. Realized firewall supports three models of DoS attacks mitigation: DoS traffic filtering on the output interface, DoS traffic filtering on the input interface, and DoS attack redirection to the honeypot. Experimental evaluation of the implemented firewall has shown that DoS traffic filtering at the input interface is the best strategy for DoS attack mitigation, which justified the application of the concept of deep network programmability.
Ahalawat, Anchal, Dash, Shashank Sekhar, Panda, Abinas, Babu, Korra Sathya.  2019.  Entropy Based DDoS Detection and Mitigation in OpenFlow Enabled SDN. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.
Distributed Denial of Service(DDoS) attacks have become most important network security threat as the number of devices are connected to internet increases exponentially and reaching an attack volume approximately very high compared to other attacks. To make the network safe and flexible a new networking infrastructure such as Software Defined Networking (SDN) has come into effect, which relies on centralized controller and decoupling of control and data plane. However due to it's centralized controller it is prone to DDoS attacks, as it makes the decision of forwarding of packets based on rules installed in switch by OpenFlow protocol. Out of all different DDoS attacks, UDP (User Datagram Protocol) flooding constitute the most in recent years. In this paper, we have proposed an entropy based DDoS detection and rate limiting based mitigation for efficient service delivery. We have evaluated using Mininet as emulator and Ryu as controller by taking switch as OpenVswitch and obtained better result in terms of bandwidth utilization and hit ratio which consume network resources to make denial of service.
Yadav, Sanjay Kumar, Suguna, P, Velusamy, R. Leela.  2019.  Entropy based mitigation of Distributed-Denial-of-Service (DDoS) attack on Control Plane in Software-Defined-Network (SDN). 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
SDN is new networking concept which has revolutionized the network architecture in recent years. It decouples control plane from data plane. Architectural change provides re-programmability and centralized control management of the network. At the same time it also increases the complexity of underlying physical infrastructure of the network. Unfortunately, the centralized control of the network introduces new vulnerabilities and attacks. Attackers can exploit the limitation of centralized control by DDoS attack on control plane. The entire network can be compromised by DDoS attack. Based on packet entropy, a solution for mitigation of DDoS attack provided in the proposed scheme.
2020-05-11
Abhilash, Goyal, Divyansh, Gupta.  2018.  Intrusion Detection and Prevention in Software Defined Networking. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–4.
Software defined networking is a concept proposed to replace traditional networks by separating control plane and data plane. It makes the network more programmable and manageable. As there is a single point of control of the network, it is more vulnerable to intrusion. The idea is to train the network controller by machine learning algorithms to let it make the intelligent decisions automatically. In this paper, we have discussed our approach to make software defined networking more secure from various malicious attacks by making it capable of detecting and preventing such attacks.
2020-04-13
Phan, Trung V., Islam, Syed Tasnimul, Nguyen, Tri Gia, Bauschert, Thomas.  2019.  Q-DATA: Enhanced Traffic Flow Monitoring in Software-Defined Networks applying Q-learning. 2019 15th International Conference on Network and Service Management (CNSM). :1–9.
Software-Defined Networking (SDN) introduces a centralized network control and management by separating the data plane from the control plane which facilitates traffic flow monitoring, security analysis and policy formulation. However, it is challenging to choose a proper degree of traffic flow handling granularity while proactively protecting forwarding devices from getting overloaded. In this paper, we propose a novel traffic flow matching control framework called Q-DATA that applies reinforcement learning in order to enhance the traffic flow monitoring performance in SDN based networks and prevent traffic forwarding performance degradation. We first describe and analyse an SDN-based traffic flow matching control system that applies a reinforcement learning approach based on Q-learning algorithm in order to maximize the traffic flow granularity. It also considers the forwarding performance status of the SDN switches derived from a Support Vector Machine based algorithm. Next, we outline the Q-DATA framework that incorporates the optimal traffic flow matching policy derived from the traffic flow matching control system to efficiently provide the most detailed traffic flow information that other mechanisms require. Our novel approach is realized as a REST SDN application and evaluated in an SDN environment. Through comprehensive experiments, the results show that-compared to the default behavior of common SDN controllers and to our previous DATA mechanism-the new Q-DATA framework yields a remarkable improvement in terms of traffic forwarding performance degradation protection of SDN switches while still providing the most detailed traffic flow information on demand.
2020-03-18
Zkik, Karim, Sebbar, Anass, Baadi, Youssef, Belhadi, Amine, Boulmalf, Mohammed.  2019.  An efficient modular security plane AM-SecP for hybrid distributed SDN. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :354–359.

Software defined networks (SDNs) represent new centralized network architecture that facilitates the deployment of services, applications and policies from the upper layers, relatively the management and control planes to the lower layers the data plane and the end user layer. SDNs give several advantages in terms of agility and flexibility, especially for mobile operators and for internet service providers. However, the implementation of these types of networks faces several technical challenges and security issues. In this paper we will focus on SDN's security issues and we will propose the implementation of a centralized security layer named AM-SecP. The proposed layer is linked vertically to all SDN layers which ease packets inspections and detecting intrusions. The purpose of this architecture is to stop and to detect malware infections, we do this by denying services and tunneling attacks without encumbering the networks by expensive operations and high calculation cost. The implementation of the proposed framework will be also made to demonstrate his feasibility and robustness.

2020-03-16
Zhou, Yaqiu, Ren, Yongmao, Zhou, Xu, Yang, Wanghong, Qin, Yifang.  2019.  A Scientific Data Traffic Scheduling Algorithm Based on Software-Defined Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :62–67.
Compared to ordinary Internet applications, the transfer of scientific data flows often has higher requirements for network performance. The network security devices and systems often affect the efficiency of scientific data transfer. As a new type of network architecture, Software-defined Networking (SDN) decouples the data plane from the control plane. Its programmability allows users to customize the network transfer path and makes the network more intelligent. The Science DMZ model is a private network for scientific data flow transfer, which can improve performance under the premise of ensuring network security. This paper combines SDN with Science DMZ, designs and implements an SDN-based traffic scheduling algorithm considering the load of link. In addition to distinguishing scientific data flow from common data flow, the algorithm further distinguishes the scientific data flows of different applications and performs different traffic scheduling of scientific data for specific link states. Experiments results proved that the algorithm can effectively improve the transmission performance of scientific data flow.
2019-01-21
Dixit, Vaibhav Hemant, Kyung, Sukwha, Zhao, Ziming, Doupé, Adam, Shoshitaishvili, Yan, Ahn, Gail-Joon.  2018.  Challenges and Preparedness of SDN-based Firewalls. Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :33–38.

Software-Defined Network (SDN) is a novel architecture created to address the issues of traditional and vertically integrated networks. To increase cost-effectiveness and enable logical control, SDN provides high programmability and centralized view of the network through separation of network traffic delivery (the "data plane") from network configuration (the "control plane"). SDN controllers and related protocols are rapidly evolving to address the demands for scaling in complex enterprise networks. Because of the evolution of modern SDN technologies, production networks employing SDN are prone to several security vulnerabilities. The rate at which SDN frameworks are evolving continues to overtake attempts to address their security issues. According to our study, existing defense mechanisms, particularly SDN-based firewalls, face new and SDN-specific challenges in successfully enforcing security policies in the underlying network. In this paper, we identify problems associated with SDN-based firewalls, such as ambiguous flow path calculations and poor scalability in large networks. We survey existing SDN-based firewall designs and their shortcomings in protecting a dynamically scaling network like a data center. We extend our study by evaluating one such SDN-specific security solution called FlowGuard, and identifying new attack vectors and vulnerabilities. We also present corresponding threat detection techniques and respective mitigation strategies.

2018-05-09
Atli, A. V., Uluderya, M. S., Tatlicioglu, S., Gorkemli, B., Balci, A. M..  2017.  Protecting SDN controller with per-flow buffering inside OpenFlow switches. 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.

Software Defined Networking (SDN) is a paradigm shift that changes the working principles of IP networks by separating the control logic from routers and switches, and logically centralizing it within a controller. In this architecture the control plane (controller) communicates with the data plane (switches) through a control channel using a standards-compliant protocol, that is, OpenFlow. While having a centralized controller creates an opportunity to monitor and program the entire network, as a side effect, it causes the control plane to become a single point of failure. Denial of service (DoS) attacks or even heavy control traffic conditions can easily become real threats to the proper functioning of the controller, which indirectly detriments the entire network. In this paper, we propose a solution to reduce the control traffic generated primarily during table-miss events. We utilize the buffer\_id feature of the OpenFlow protocol, which has been designed to identify individually buffered packets within a switch, reusing it to identify flows buffered as a series of packets during table-miss, which happens when there is no related rule in the switch flow tables that matches the received packet. Thus, we allow the OpenFlow switch to send only the first packet of a flow to the controller for a table-miss while buffering the rest of the packets in the switch memory until the controller responds or time out occurs. The test results show that OpenFlow traffic is significantly reduced when the proposed method is used.

Shan-Shan, J., Ya-Bin, X..  2017.  The APT detection method in SDN. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1240–1245.

SDN is a new network framework which can be controlled and defined by software programming, and OpenFlow is the communication protocol between SDN controller plane and data plane. With centralized control of SDN, the network is more vulnerable encounter APT than traditional network. After deeply analyzing the process of APT at each stage in SDN, this paper proposes the APT detection method based on HMM, which can fully reflect the relationship between attack behavior and APT stage. Experiment shows that the method is more accurate to detect APT in SDN, and less overhead.

2018-02-02
Hussein, A., Elhajj, I. H., Chehab, A., Kayssi, A..  2016.  SDN Security Plane: An Architecture for Resilient Security Services. 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW). :54–59.

Software Defined Networking (SDN) is the new promise towards an easily configured and remotely controlled network. Based on Centralized control, SDN technology has proved its positive impact on the world of network communications from different aspects. Security in SDN, as in traditional networks, is an essential feature that every communication system should possess. In this paper, we propose an SDN security design approach, which strikes a good balance between network performance and security features. We show how such an approach can be used to prevent DDoS attacks targeting either the controller or the different hosts in the network, and how to trace back the source of the attack. The solution lies in introducing a third plane, the security plane, in addition to the data plane, which is responsible for forwarding data packets between SDN switches, and parallel to the control plane, which is responsible for rule and data exchange between the switches and the SDN controller. The security plane is designed to exchange security-related data between a third party agent on the switch and a third party software module alongside the controller. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security with low overhead and minimal configuration.

2018-01-16
Rengaraju, P., Ramanan, V. R., Lung, C. H..  2017.  Detection and prevention of DoS attacks in Software-Defined Cloud networks. 2017 IEEE Conference on Dependable and Secure Computing. :217–223.

One of the recent focuses in Cloud Computing networks is Software Defined Clouds (SDC), where the Software-Defined Networking (SDN) technology is combined with the traditional Cloud network. SDC is aimed to create an effective Cloud environment by extending the virtualization concept to all resources. In that, the control plane is decoupled from the data plane in a network device and controlled by the centralized controller using the OpenFlow Protocol (OFP). As the centralized controller performs all control functions in a network, it requires strong security. Already, Cloud Computing faces many security challenges. Most vulnerable attacks in SDC is Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks. To overcome the DoS attacks, we propose a distributed Firewall with Intrusion Prevention System (IPS) for SDC. The proposed distributed security mechanism is investigated for two DoS attacks, ICMP and SYN flooding attacks for different network scenarios. From the simulation results and discussion, we showed that the distributed Firewall with IPS security detects and prevents the DoS attack effectively.

2017-12-12
Thimmaraju, K., Schiff, L., Schmid, S..  2017.  Outsmarting Network Security with SDN Teleportation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :563–578.

Software-defined networking is considered a promising new paradigm, enabling more reliable and formally verifiable communication networks. However, this paper shows that the separation of the control plane from the data plane, which lies at the heart of Software-Defined Networks (SDNs), introduces a new vulnerability which we call teleportation. An attacker (e.g., a malicious switch in the data plane or a host connected to the network) can use teleportation to transmit information via the control plane and bypass critical network functions in the data plane (e.g., a firewall), and to violate security policies as well as logical and even physical separations. This paper characterizes the design space for teleportation attacks theoretically, and then identifies four different teleportation techniques. We demonstrate and discuss how these techniques can be exploited for different attacks (e.g., exfiltrating confidential data at high rates), and also initiate the discussion of possible countermeasures. Generally, and given today's trend toward more intent-based networking, we believe that our findings are relevant beyond the use cases considered in this paper.

2015-05-05
Bronzino, F., Chao Han, Yang Chen, Nagaraja, K., Xiaowei Yang, Seskar, I., Raychaudhuri, D..  2014.  In-Network Compute Extensions for Rate-Adaptive Content Delivery in Mobile Networks. Network Protocols (ICNP), 2014 IEEE 22nd International Conference on. :511-517.

Traffic from mobile wireless networks has been growing at a fast pace in recent years and is expected to surpass wired traffic very soon. Service providers face significant challenges at such scales including providing seamless mobility, efficient data delivery, security, and provisioning capacity at the wireless edge. In the Mobility First project, we have been exploring clean slate enhancements to the network protocols that can inherently provide support for at-scale mobility and trustworthiness in the Internet. An extensible data plane using pluggable compute-layer services is a key component of this architecture. We believe these extensions can be used to implement in-network services to enhance mobile end-user experience by either off-loading work and/or traffic from mobile devices, or by enabling en-route service-adaptation through context-awareness (e.g., Knowing contemporary access bandwidth). In this work we present details of the architectural support for in-network services within Mobility First, and propose protocol and service-API extensions to flexibly address these pluggable services from end-points. As a demonstrative example, we implement an in network service that does rate adaptation when delivering video streams to mobile devices that experience variable connection quality. We present details of our deployment and evaluation of the non-IP protocols along with compute-layer extensions on the GENI test bed, where we used a set of programmable nodes across 7 distributed sites to configure a Mobility First network with hosts, routers, and in-network compute services.

2014-09-17
Chasaki, D., Wolf, T..  2012.  Attacks and Defenses in the Data Plane of Networks. Dependable and Secure Computing, IEEE Transactions on. 9:798-810.

Security issues in computer networks have focused on attacks on end systems and the control plane. An entirely new class of emerging network attacks aims at the data plane of the network. Data plane forwarding in network routers has traditionally been implemented with custom-logic hardware, but recent router designs increasingly use software-programmable network processors for packet forwarding. These general-purpose processing devices exhibit software vulnerabilities and are susceptible to attacks. We demonstrate-to our knowledge the first-practical attack that exploits a vulnerability in packet processing software to launch a devastating denial-of-service attack from within the network infrastructure. This attack uses only a single attack packet to consume the full link bandwidth of the router's outgoing link. We also present a hardware-based defense mechanism that can detect situations where malicious packets try to change the operation of the network processor. Using a hardware monitor, our NetFPGA-based prototype system checks every instruction executed by the network processor and can detect deviations from correct processing within four clock cycles. A recovery system can restore the network processor to a safe state within six cycles. This high-speed detection and recovery system can ensure that network processors can be protected effectively and efficiently from this new class of attacks.