Biblio
Many organizations process and store classified data within their computer networks. Owing to the value of data that they hold; such organizations are more vulnerable to targets from adversaries. Accordingly, the sensitive organizations resort to an ‘air-gap’ approach on their networks, to ensure better protection. However, despite the physical and logical isolation, the attackers have successfully manifested their capabilities by compromising such networks; examples of Stuxnet and Agent.btz in view. Such attacks were possible due to the successful manipulation of human beings. It has been observed that to build up such attacks, persistent reconnaissance of the employees, and their data collection often forms the first step. With the rapid integration of social media into our daily lives, the prospects for data-seekers through that platform are higher. The inherent risks and vulnerabilities of social networking sites/apps have cultivated a rich environment for foreign adversaries to cherry-pick personal information and carry out successful profiling of employees assigned with sensitive appointments. With further targeted social engineering techniques against the identified employees and their families, attackers extract more and more relevant data to make an intelligent picture. Finally, all the information is fused to design their further sophisticated attacks against the air-gapped facility for data pilferage. In this regard, the success of the adversaries in harvesting the personal information of the victims largely depends upon the common errors committed by legitimate users while on duty, in transit, and after their retreat. Such errors would keep on repeating unless these are aligned with their underlying human behaviors and weaknesses, and the requisite mitigation framework is worked out.
The Internet of Things (IoT) continuously grows as applications require connectivity and sensor networks are being deployed in multiple application domains. With the increased applicability demand, the need for testing and development frameworks also increases. This paper presents a novel simulation framework for testing IPv6 over Low Power Wireless Personal Networks (6LoWPAN) networks using the Mininet-WiFi simulator. The goal of the simulation framework is to allow easier automation testing of large-scale networks and to also allow easy configuration. This framework is a starting point for many development scenarios targeting traffic management, Quality of Service (QoS) or security network features. A basic smart city simulation is presented which demonstrates the working principles of the framework.
Since 2018, a broad class of microarchitectural attacks called transient execution attacks (e.g., Spectre and Meltdown) have been disclosed. By abusing speculative execution mechanisms in modern CPUs, these attacks enable adversaries to leak secrets across security boundaries. A transient execution attack typically evolves through multiple stages, termed the attack chain. We find that current transient execution attacks usually rely on static attack chains, resulting in that any blockage in an attack chain may cause the failure of the entire attack. In this paper, we propose a novel defense-aware framework, called TEADS, for synthesizing transient execution attacks dynamically. The main idea of TEADS is that: each attacking stage in a transient execution attack chain can be implemented in several ways, and the implementations used in different attacking stages can be combined together under certain constraints. By constructing an attacking graph representing combination relationships between the implementations and testing available paths in the attacking graph dynamically, we can finally synthesize transient execution attacks which can bypass the imposed defense techniques. Our contributions include: (1) proposing an automated defense-aware framework for synthesizing transient execution attacks, even though possible combinations of defense strategies are enabled; (2) presenting an attacking graph extension algorithm to detect potential attack chains dynamically; (3) implementing TEADS and testing it on several modern CPUs with different protection settings. Experimental results show that TEADS can bypass the defenses equipped, improving the adaptability and durability of transient execution attacks.
The purpose of this work is to analyze the security model of a robotized system, to analyze the approaches to assessing the security of this system, and to develop our own framework. The solution to this problem involves the use of developed frameworks. The analysis will be conducted on a robotic system of robots. The prefix structures assume that the robotic system is divided into levels, and after that it is necessary to directly protect each level. Each level has its own characteristics and drawbacks that must be considered when developing a security system for a robotic system.
The presence of robots is becoming more apparent as technology progresses and the market focus transitions from smart phones to robotic personal assistants such as those provided by Amazon and Google. The integration of robots in our societies is an inevitable tendency in which robots in many forms and with many functionalities will provide services to humans. This calls for an understanding of how humans are affected by both the presence of and the reliance on robots to perform services for them. In this paper we explore the effects that robots have on humans when a service is performed on request. We expose three groups of human participants to three levels of service completion performed by robots. We record and analyse human perceptions such as propensity to trust, competency, responsiveness, sociability, and team work ability. Our results demonstrate that humans tend to trust robots and are more willing to interact with them when they autonomously recover from failure by requesting help from other robots to fulfil their service. This supports the view that autonomy and team working capabilities must be brought into robots in an effort to strengthen trust in robots performing a service.
The evaluation of fault attacks on security-critical hardware implementations of cryptographic primitives is an important concern. In such regards, we have created a framework for automated construction of fault attacks on hardware realization of ciphers. The framework can be used to quickly evaluate any cipher implementations, including any optimisations. It takes the circuit description of the cipher and the fault model as input. The output of the framework is a set of algebraic equations, such as conjunctive normal form (CNF) clauses, which is then fed to a SAT solver. We consider both attacking an actual implementation of a cipher on an field-programmable gate array (FPGA) platform using a fault injector and the evaluation of an early design of the cipher using idealized fault models. We report the successful application of our hardware-oriented framework to a collection of ciphers, including the advanced encryption standard (AES), and the lightweight block ciphers LED and PRESENT. The corresponding results and a discussion of the impact to different fault models on our framework are shown. Moreover, we report significant improvements compared to similar frameworks, such as speedups or more advanced features. Our framework is the first algebraic fault attack (AFA) tool to evaluate the state-of-the art cipher LED-64, PRESENT and full-scale AES using only hardware-oriented structural cipher descriptions.
In recent years, the increasing concerns around the centralized cloud web services (e.g. privacy, governance, surveillance, security) have triggered the emergence of new distributed technologies, such as IPFS or the Blockchain. These innovations have tackled technical challenges that were unresolved until their appearance. Existing models of peer-to-peer systems need a revision to cover the spectrum of potential systems that can be now implemented as peer-to-peer systems. This work presents a framework to build these systems. It uses an agent-oriented approach in an open environment where agents have only partial information of the system data. The proposal covers data access, data discovery and data trust in peer-to-peer systems where different actors may interact. Moreover, the framework proposes a distributed architecture for these open systems, and provides guidelines to decide in which cases Blockchain technology may be required, or when other technologies may be sufficient.
In the context of emerging applications such as IoT, an RFID framework that can dynamically incorporate, identify, and seamlessly regulate the RFID tags is considered exciting. Earlier RFID frameworks developed using the older web technologies were limited in their ability to provide complete information about the RFID tags and their respective locations. However, the new and emerging web technologies have transformed this scenario and now framework can be developed to include all the required flexibility and security for seamless applications such as monitoring of RFID tags. This paper revisits and proposes a generic scenario of an RFID framework built using latest web technology and demonstrates its ability to customize using an application for tracking of personal user objects. This has been shown that the framework based on newer web technologies can be indeed robust, uniform, unified, and integrated.
Figuring innovations and development of web diminishes the exertion required for different procedures. Among them the most profited businesses are electronic frameworks, managing an account, showcasing, web based business and so on. This framework mostly includes the data trades ceaselessly starting with one host then onto the next. Amid this move there are such a variety of spots where the secrecy of the information and client gets loosed. Ordinarily the zone where there is greater likelihood of assault event is known as defenceless zones. Electronic framework association is one of such place where numerous clients performs there undertaking as indicated by the benefits allotted to them by the director. Here the aggressor makes the utilization of open ranges, for example, login or some different spots from where the noxious script is embedded into the framework. This scripts points towards trading off the security imperatives intended for the framework. Few of them identified with clients embedded scripts towards web communications are SQL infusion and cross webpage scripting (XSS). Such assaults must be distinguished and evacuated before they have an effect on the security and classification of the information. Amid the most recent couple of years different arrangements have been incorporated to the framework for making such security issues settled on time. Input approvals is one of the notable fields however experiences the issue of execution drops and constrained coordinating. Some other component, for example, disinfection and polluting will create high false report demonstrating the misclassified designs. At the center, both include string assessment and change investigation towards un-trusted hotspots for totally deciphering the effect and profundity of the assault. This work proposes an enhanced lead based assault discovery with specifically message fields for viably identifying the malevolent scripts. The work obstructs the ordinary access for malignant so- rce utilizing and hearty manage coordinating through unified vault which routinely gets refreshed. At the underlying level of assessment, the work appears to give a solid base to further research.
This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.
As one of the security components in cyber situational awareness systems, Intrusion Detection System (IDS) is implemented by many organizations in their networks to address the impact of network attacks. Regardless of the tools and technologies used to generate security alarms, IDS can provide a situation overview of network traffic. With the security alarm data generated, most organizations do not have the right techniques and further analysis to make this alarm data more valuable for the security team to handle attacks and reduce risk to the organization. This paper proposes the IDS Metrics Framework for cyber situational awareness system that includes the latest technologies and techniques that can be used to create valuable metrics for security advisors in making the right decisions. This metrics framework consists of the various tools and techniques used to evaluate the data. The evaluation of the data is then used as a measurement against one or more reference points to produce an outcome that can be very useful for the decision making process of cyber situational awareness system. This metric offers an additional Graphical User Interface (GUI) tools that produces graphical displays and provides a great platform for analysis and decision-making by security teams.
Cloud has gained a wide acceptance across the globe. Despite wide acceptance and adoption of cloud computing, certain apprehensions and diffidence, related to safety and security of data still exists. The service provider needs to convince and demonstrate to the client, the confidentiality of data on the cloud. This can be broadly translated to issues related to the process of identifying, developing, maintaining and optimizing trust with clients regarding the services provided. Continuous demonstration, maintenance and optimization of trust of the agreed upon services affects the relationship with a client. The paper proposes a framework of integration of trust at the IAAS level in the cloud. It proposes a novel method of generation of trust index factor, considering the performance and the agility of the feedback received using fuzzy logic.