Visible to the public Biblio

Found 596 results

Filters: Keyword is Computer crime  [Clear All Filters]
2023-03-17
Pardee, Jessica W., Schneider, Jennifer, Lam, Cindy.  2022.  Operationalizing Resiliency among Childcare Providers during the COVID-19 Pandemic. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
Childcare, a critical infrastructure, played an important role to create community resiliency during the COVID-19 pandemic. By finding pathways to remain open, or rapidly return to operations, the adaptive capacity of childcare providers to offer care in the face of unprecedented challenges functioned to promote societal level mitigation of the COVID-19 pandemic impacts, to assist families in their personal financial recoveries, and to provide consistent, caring, and meaningful educational experiences for society's youngest members. This paper assesses the operational adaptations of childcare centers as a key resource and critical infrastructure during the COVID-19 pandemic in the Greater Rochester, NY metropolitan region. Our findings evaluate the policy, provider mitigation, and response actions documenting the challenges they faced and the solutions they innovated. Implications for this research extend to climate-induced disruptions, including fires, water shortages, electric grid cyberattacks, and other disruptions where extended stay-at-home orders or service critical interventions are implemented.
2023-02-03
Guaña-Moya, Javier, Chiluisa-Chiluisa, Marco Antonio, Jaramillo-Flores, Paulina del Carmen, Naranjo-Villota, Darwin, Mora-Zambrano, Eugenio Rafael, Larrea-Torres, Lenin Gerardo.  2022.  Ataques de phishing y cómo prevenirlos Phishing attacks and how to prevent them. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The vertiginous technological advance related to globalization and the new digital era has led to the design of new techniques and tools that deal with the risks of technology and information. Terms such as "cybersecurity" stand out, which corresponds to that area of computer science that is responsible for the development and implementation of information protection mechanisms and technological infrastructure, in order to deal with cyberattacks. Phishing is a crime that uses social engineering and technical subterfuge to steal personal identity data and financial account credentials from users, representing a high economic and financial risk worldwide, both for individuals and for large organizations. The objective of this research is to determine the ways to prevent phishing, by analyzing the characteristics of this computer fraud, the various existing modalities and the main prevention strategies, in order to increase the knowledge of users about this. subject, highlighting the importance of adequate training that allows establishing efficient mechanisms to detect and block phishing.
ISSN: 2166-0727
2023-01-20
Mohammed, Amira, George, Gibin.  2022.  Vulnerabilities and Strategies of Cybersecurity in Smart Grid - Evaluation and Review. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—6.
Smart grid (SG) is considered the next generation of the traditional power grid. It is mainly divided into three main infrastructures: power system, information and communication infrastructures. Cybersecurity is imperative for information infrastructure and the secure, reliable, and efficient operation of the smart grid. Cybersecurity or a lack of proper implementation thereof poses a considerable challenge to the deployment of SG. Therefore, in this paper, A comprehensive survey of cyber security is presented in the smart grid context. Cybersecurity-related information infrastructure is clarified. The impact of adopting cybersecurity on control and management systems has been discussed. Also, the paper highlights the cybersecurity issues and challenges associated with the control decisions in the smart grid.
Korkmaz, Yusuf, Huseinovic, Alvin, Bisgin, Halil, Mrdović, Saša, Uludag, Suleyman.  2022.  Using Deep Learning for Detecting Mirroring Attacks on Smart Grid PMU Networks. 2022 International Balkan Conference on Communications and Networking (BalkanCom). :84–89.
Similar to any spoof detection systems, power grid monitoring systems and devices are subject to various cyberattacks by determined and well-funded adversaries. Many well-publicized real-world cyberattacks on power grid systems have been publicly reported. Phasor Measurement Units (PMUs) networks with Phasor Data Concentrators (PDCs) are the main building blocks of the overall wide area monitoring and situational awareness systems in the power grid. The data between PMUs and PDC(s) are sent through the legacy networks, which are subject to many attack scenarios under with no, or inadequate, countermeasures in protocols, such as IEEE 37.118-2. In this paper, we consider a stealthier data spoofing attack against PMU networks, called a mirroring attack, where an adversary basically injects a copy of a set of packets in reverse order immediately following their original positions, wiping out the correct values. To the best of our knowledge, for the first time in the literature, we consider a more challenging attack both in terms of the strategy and the lower percentage of spoofed attacks. As part of our countermeasure detection scheme, we make use of novel framing approach to make application of a 2D Convolutional Neural Network (CNN)-based approach which avoids the computational overhead of the classical sample-based classification algorithms. Our experimental evaluation results show promising results in terms of both high accuracy and true positive rates even under the aforementioned stealthy adversarial attack scenarios.
Shi, Zhixin, Wang, Xiangyu, Liu, Pengcheng.  2022.  NBP-MS: Malware Signature Generation Based on Network Behavior Profiling. 2022 26th International Conference on Pattern Recognition (ICPR). :1865–1870.
With the proliferation of malware, the detection and classification of malware have been hot topics in the academic and industrial circles of cyber security, and the generation of malware signatures is one of the important research directions. In this paper, we propose NBP-MS, a method of signature generation that is based on network traffic generated by malware. Specifically, we utilize the network traffic generated by malware to perform fine-grained profiling of its network behaviors first, and then cluster all the profiles to generate network behavior signatures to classify malware, providing support for subsequent analysis and defense.
2023-01-13
Boodai, Razan M., Alessa, Hadeel A., Alanazi, Arwa H..  2022.  An Approach to Address Risk Management Challenges: Focused on IT Governance Framework. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :184–188.
Information Technology (IT) governance crosses the organization practices, culture, and policy that support IT management in controlling five key functions, which are strategic alignment, performance management, resource management, value delivery, and risk management. The line of sight is extended from the corporate strategy to the risk management, and risk controls are assessed against operational goals. Thus, the risk management model is concerned with ensuring that the corporate risks are sufficiently controlled and managed. Many organizations rely on IT services to facilitate and sustain their operations, which mandate the existence of a risk management model in their IT governance. This paper examines prior research based on IT governance by using a risk management framework. It also proposes a new method for calculating and classifying IT-related risks. Additionally, we assessed our technique with one of the critical IT services that proves the reliability and accuracy of the implemented model.
2023-01-05
Mead, Nancy R..  2022.  Critical Infrastructure Protection and Supply Chain Risk Management. 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW). :215—218.
Critical infrastructure is a key area in cybersecurity. In the U.S., it was front and center in 1997 with the report from the President’s Commission on Critical Infrastructure Protection (PCCIP), and now affects countries worldwide. Critical Infrastructure Protection must address all types of cybersecurity threats - insider threat, ransomware, supply chain risk management issues, and so on. Unsurprisingly, in the past 25 years, the risks and incidents have increased rather than decreased and appear in the news daily. As an important component of critical infrastructure protection, secure supply chain risk management must be integrated into development projects. Both areas have important implications for security requirements engineering.
2022-12-23
Marková, Eva, Sokol, Pavol, Kováćová, Kristína.  2022.  Detection of relevant digital evidence in the forensic timelines. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–7.
Security incident handling and response are essen-tial parts of every organization's information and cyber security. Security incident handling consists of several phases, among which digital forensic analysis has an irreplaceable place. Due to particular digital evidence being recorded at a specific time, timelines play an essential role in analyzing this digital evidence. One of the vital tasks of the digital forensic investigator is finding relevant records in this timeline. This operation is performed manually in most cases. This paper focuses on the possibilities of automatically identifying digital evidence pertinent to the case and proposes a model that identifies this digital evidence. For this purpose, we focus on Windows operating system and the NTFS file system and use outlier detection (Local Outlier Factor method). Collected digital evidence is preprocessed, transformed to binary values, and aggregated by file system inodes and names. Subsequently, we identify digital records (file inodes, file names) relevant to the case. This paper analyzes the combinations of attributes, aggregation functions, local outlier factor parameters, and their impact on the resulting selection of relevant file inodes and file names.
2022-12-09
Tunc, Cihan, Hariri, Salim.  2022.  Self-Protection for Unmanned Autonomous Vehicles (SP-UAV): Design Overview and Evaluation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :128—132.
Unmanned autonomous vehicles (UAVs) have been receiving high interest lately due to their wide range of potential deployment options that can touch all aspects of our life and economy, such as transportation, delivery, healthcare, surveillance. However, UAVs have also introduced many new vulnerabilities and attack surfaces that can be exploited by cyberattacks. Due to their complexity, autonomous operations, and being relatively new technologies, cyberattacks can be persistent, complex, and can propagate rapidly to severely impact the main UAV functions such as mission management, support, processing operations, maneuver operations, situation awareness. Furthermore, such cyberattacks can also propagate among other UAVs or even their control stations and may even endanger human life. Hence, we need self-protection techniques with an autonomic management approach. In this paper we present our approach to implement self-protection of UAVs (SP-UAV) such that they can continue their critical functions despite cyberattacks targeting UAV operations or services. We present our design approach and implementation using a unified management interface based on three ports: Configuration, observer, and control ports. We have implemented the SP-UAV using C and demonstrated using different attack scenarios how we can apply autonomic responses without human involvement to tolerate cyberattacks against the UAV operations.
2022-12-02
Wylde, Allison.  2021.  Zero trust: Never trust, always verify. 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—4.

This short paper argues that current conceptions in trust formation scholarship miss the context of zero trust, a practice growing in importance in cyber security. The contribution of this paper presents a novel approach to help conceptualize and operationalize zero trust and a call for a research agenda. Further work will expand this model and explore the implications of zero trust in future digital systems.

2022-11-18
Almuhtadi, Wahab, Bahri, Surbhi, Fenwick, Wynn, Henderson, Liam, Henley-Vachon, Liam, Mukasa, Joshua.  2021.  Malware Detection and Security Analysis Capabilities in a Continuous Integration / Delivery Context Using Assemblyline. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—5.
Risk management is an essential part of software security. Assemblyline is a software security tool developed by the Canadian Centre for Cyber Security (CCCS) for malware detection and analysis. In this paper, we examined the performance of Assemblyline for assessing the risk of executable files. We developed and examined use-cases where Assemblyline is included as part of a security safety net assessing vulnerabilities that would lead to risk. Finally, we considered Assemblyline’s utility in a continuous integration / delivery context using our test results.
2022-10-20
Ma, Tengchao, Xu, Changqiao, Zhou, Zan, Kuang, Xiaohui, Zhong, Lujie, Grieco, Luigi Alfredo.  2020.  Intelligent-Driven Adapting Defense Against the Client-Side DNS Cache Poisoning in the Cloud. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1—6.
A new Domain Name System (DNS) cache poisoning attack aiming at clients has emerged recently. It induced cloud users to visit fake web sites and thus reveal information such as account passwords. However, the design of current DNS defense architecture does not formally consider the protection of clients. Although the DNS traffic encryption technology can alleviate this new attack, its deployment is as slow as the new DNS architecture. Thus we propose a lightweight adaptive intelligent defense strategy, which only needs to be deployed on the client without any configuration support of DNS. Firstly, we model the attack and defense process as a static stochastic game with incomplete information under bounded rationality conditions. Secondly, to solve the problem caused by uncertain attack strategies and large quantities of game states, we adopt a deep reinforcement learning (DRL) with guaranteed monotonic improvement. Finally, through the prototype system experiment in Alibaba Cloud, the effectiveness of our method is proved against multiple attack modes with a success rate of 97.5% approximately.
2022-09-30
Park, Wonhyung, Ahn, GwangHyun.  2021.  A Study on the Next Generation Security Control Model for Cyber Threat Detection in the Internet of Things (IoT) Environment. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :213–217.
Recently, information leakage accidents have been continuously occurring due to cyberattacks, and internal information leakage has also been occurring additionally. In this situation, many hacking accidents and DDoS attacks related to IoT are reported, and cyber threat detection field is expanding. Therefore, in this study, the trend related to the commercialization and generalization of IoT technology and the degree of standardization of IoT have been analyzed. Based on the reality of IoT analyzed through this process, research and analysis on what points are required in IoT security control was conducted, and then IoT security control strategy was presented. In this strategy, the IoT environment was divided into IoT device, IoT network/communication, and IoT service/platform in line with the basic strategic framework of 'Pre-response-accident response-post-response', and the strategic direction of security control was established suitable for each of them.
Kim, Byoungkoo, Yoon, Seungyong, Kang, Yousung.  2021.  PUF-based IoT Device Authentication Scheme on IoT Open Platform. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :1873–1875.
Recently, it is predicted that interworking between heterogeneous devices will be accelerated due to the openness of the IoT (Internet of Things) platform, but various security threats are also expected to increase. However, most IoT open platforms remain at the level that utilizes existing security technologies. Therefore, a more secure security technology is required to prevent illegal copying and leakage of important data through stealing, theft, and hacking of IoT devices. In addition, a technique capable of ensuring interoperability with existing standard technologies is required. This paper proposes an IoT device authentication method based on PUF (Physical Unclonable Function) that operates on an IoT open platform. By utilizing PUF technology, the proposed method can effectively respond to the threat of exposure of the authentication key of the existing IoT open platform. Above all, the proposed method can contribute to compatibility and interoperability with existing technologies by providing a device authentication method that can be effectively applied to the OCF Iotivity standard specification, which is a representative IoT open platform.
Stojkovski, Borce, Lenzini, Gabriele.  2021.  A workflow and toolchain proposal for analyzing users’ perceptions in cyber threat intelligence sharing platforms. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :324–330.
Cyber Threat Intelligence (CTI) sharing platforms are valuable tools in cybersecurity. However, despite the fact that effective CTI exchange highly depends on human aspects, cyber behavior in CTI sharing platforms has been notably less investigated by the security research community.Motivated by this research gap, we ground our work in the concrete challenge of understanding users’ perceptions of information sharing in CTI platforms. To this end, we propose a conceptual workflow and toolchain that would seek to verify whether users have an accurate comprehension of how far information travels when shared in a CTI sharing platform.We contextualize our concept within MISP as a use case, and discuss the benefits of our socio-technical approach as a potential tool for security analysis, simulation, or education/training support. We conclude with a brief outline of future work that would seek to evaluate and validate the proposed model.
2022-09-29
Johnson, Chelsea K., Gutzwiller, Robert S., Gervais, Joseph, Ferguson-Walter, Kimberly J..  2021.  Decision-Making Biases and Cyber Attackers. 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). :140–144.
Cyber security is reliant on the actions of both machine and human and remains a domain of importance and continual evolution. While the study of human behavior has grown, less attention has been paid to the adversarial operator. Cyber environments consist of complex and dynamic situations where decisions are made with incomplete information. In such scenarios people form strategies based on simplified models of the world and are often efficient and effective, yet may result in judgement or decision-making bias. In this paper, we examine an initial list of biases affecting adversarial cyber actors. We use subject matter experts to derive examples and demonstrate these biases likely exist, and play a role in how attackers operate.
2022-09-16
Almseidin, Mohammad, Al-Sawwa, Jamil, Alkasassbeh, Mouhammd.  2021.  Anomaly-based Intrusion Detection System Using Fuzzy Logic. 2021 International Conference on Information Technology (ICIT). :290—295.
Recently, the Distributed Denial of Service (DDOS) attacks has been used for different aspects to denial the number of services for the end-users. Therefore, there is an urgent need to design an effective detection method against this type of attack. A fuzzy inference system offers the results in a more readable and understandable form. This paper introduces an anomaly-based Intrusion Detection (IDS) system using fuzzy logic. The fuzzy logic inference system implemented as a detection method for Distributed Denial of Service (DDOS) attacks. The suggested method was applied to an open-source DDOS dataset. Experimental results show that the anomaly-based Intrusion Detection system using fuzzy logic obtained the best result by utilizing the InfoGain features selection method besides the fuzzy inference system, the results were 91.1% for the true-positive rate and 0.006% for the false-positive rate.
2022-09-09
Sobb, Theresa May, Turnbull, Benjamin.  2020.  Assessment of Cyber Security Implications of New Technology Integrations into Military Supply Chains. 2020 IEEE Security and Privacy Workshops (SPW). :128—135.
Military supply chains play a critical role in the acquisition and movement of goods for defence purposes. The disruption of these supply chain processes can have potentially devastating affects to the operational capability of military forces. The introduction and integration of new technologies into defence supply chains can serve to increase their effectiveness. However, the benefits posed by these technologies may be outweighed by significant consequences to the cyber security of the entire defence supply chain. Supply chains are complex Systems of Systems, and the introduction of an insecure technology into such a complex ecosystem may induce cascading system-wide failure, and have catastrophic consequences to military mission assurance. Subsequently, there is a need for an evaluative process to determine the extent to which a new technology will affect the cyber security of military supply chains. This work proposes a new model, the Military Supply Chain Cyber Implications Model (M-SCCIM), that serves to aid military decision makers in understanding the potential cyber security impact of introducing new technologies to supply chains. M-SCCIM is a multiphase model that enables understanding of cyber security and supply chain implications through the lenses of theoretical examinations, pilot applications and system wide implementations.
2022-08-26
Zhang, Fan, Bu, Bing.  2021.  A Cyber Security Risk Assessment Methodology for CBTC Systems Based on Complex Network Theory and Attack Graph. 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC). :15—20.

Cyber security risk assessment is very important to quantify the security level of communication-based train control (CBTC) systems. In this paper, a methodology is proposed to assess the cyber security risk of CBTC systems that integrates complex network theory and attack graph method. On one hand, in order to determine the impact of malicious attacks on train control, we analyze the connectivity of movement authority (MA) paths based on the working state of nodes, the connectivity of edges. On the other hand, attack graph is introduced to quantify the probabilities of potential attacks that combine multiple vulnerabilities in the cyber world of CBTC. Experiments show that our methodology can assess the security risks of CBTC systems and improve the security level after implementing reinforcement schemes.

de Moura, Ralf Luis, Franqueira, Virginia N. L., Pessin, Gustavo.  2021.  Towards Safer Industrial Serial Networks: An Expert System Framework for Anomaly Detection. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). :1197—1205.

Cyber security is a topic of increasing relevance in relation to industrial networks. The higher intensity and intelligent use of data pushed by smart technology (Industry 4.0) together with an augmented integration between the operational technology (production) and the information technology (business) parts of the network have considerably raised the level of vulnerabilities. On the other hand, many industrial facilities still use serial networks as underlying communication system, and they are notoriously limited from a cyber security perspective since protection mechanisms available for ТСР/IР communication do not apply. Therefore, an attacker gaining access to a serial network can easily control the industrial components, potentially causing catastrophic incidents, jeopardizing assets and human lives. This study proposes a framework to act as an anomaly detection system (ADS) for industrial serial networks. It has three ingredients: an unsupervised К-means component to analyse message content, a knowledge-based Expert System component to analyse message metadata, and a voting process to generate alerts for security incidents, anomalous states, and faults. The framework was evaluated using the Proflbus-DP, a network simulator which implements a serial bus system. Results for the simulated traffic were promising: 99.90% for accuracy, 99,64% for precision, and 99.28% for F1-Score. They indicate feasibility of the framework applied to serial-based industrial networks.

2022-08-12
Choi, Heeyoung, Young, Kang Ju.  2021.  Practical Approach of Security Enhancement Method based on the Protection Motivation Theory. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :96—97.

In order to strengthen information security, practical solutions to reduce information security stress are needed because the motivation of the members of the organization who use it is needed to work properly. Therefore, this study attempts to suggest the key factors that can enhance security while reducing the information security stress of organization members. To this end, based on the theory of protection motivation, trust and security stress in information security policies are set as mediating factors to explain changes in security reinforcement behavior, and risk, efficacy, and reaction costs of cyberattacks are considered as prerequisites. Our study suggests a solution to the security reinforcement problem by analyzing the factors that influence the behavior of organization members that can raise the protection motivation of the organization members.

2022-08-03
de Biase, Maria Stella, Marulli, Fiammetta, Verde, Laura, Marrone, Stefano.  2021.  Improving Classification Trustworthiness in Random Forests. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :563—568.
Machine learning algorithms are becoming more and more widespread in industrial as well as in societal settings. This diffusion is starting to become a critical aspect of new software-intensive applications due to the need of fast reactions to changes, even if temporary, in data. This paper investigates on the improvement of reliability in the Machine Learning based classification by extending Random Forests with Bayesian Network models. Such models, combined with a mechanism able to adjust the reputation level of single learners, may improve the overall classification trustworthiness. A small example taken from the healthcare domain is presented to demonstrate the proposed approach.
2022-07-14
Pagán, Alexander, Elleithy, Khaled.  2021.  A Multi-Layered Defense Approach to Safeguard Against Ransomware. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0942–0947.
There has been a significant rise in ransomware attacks over the last few years. Cyber attackers have made use of tried and true ransomware viruses to target the government, health care, and educational institutions. Ransomware variants can be purchased on the dark web by amateurs giving them the same attack tools used by professional cyber attackers without experience or skill. Traditional antivirus and antimalware products have improved, but they alone fall short when it comes to catching and stopping ransomware attacks. Employee training has become one of the most important aspects of being prepared for attempted cyberattacks. However, training alone only goes so far; human error is still the main entry point for malware and ransomware infections. In this paper, we propose a multi-layered defense approach to safeguard against ransomware. We have come to the startling realization that it is not a matter of “if” your organization will be hit with ransomware, but “when” your organization will be hit with ransomware. If an organization is not adequately prepared for an attack or how to respond to an attack, the effects can be costly and devastating. Our approach proposes having innovative antimalware software on the local machines, properly configured firewalls, active DNS/Web filtering, email security, backups, and staff training. With the implementation of this layered defense, the attempt can be caught and stopped at multiple points in the event of an attempted ransomware attack. If the attack were successful, the layered defense provides the option for recovery of affected data without paying a ransom.
Lee, Sun-Jin, Shim, Hye-Yeon, Lee, Yu-Rim, Park, Tae-Rim, Park, So-Hyun, Lee, Il-Gu.  2021.  Study on Systematic Ransomware Detection Techniques. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :297–301.
Cyberattacks have been progressed in the fields of Internet of Things, and artificial intelligence technologies using the advanced persistent threat (APT) method recently. The damage caused by ransomware is rapidly spreading among APT attacks, and the range of the damages of individuals, corporations, public institutions, and even governments are increasing. The seriousness of the problem has increased because ransomware has been evolving into an intelligent ransomware attack that spreads over the network to infect multiple users simultaneously. This study used open source endpoint detection and response tools to build and test a framework environment that enables systematic ransomware detection at the network and system level. Experimental results demonstrate that the use of EDR tools can quickly extract ransomware attack features and respond to attacks.
Bishwas, Arit Kumar, Advani, Jai.  2021.  Managing Cyber Security with Quantum Techniques. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
Recent advancements in quantum information theory and quantum computation intend the possibilities of breaking the existing classical cryptographic systems. To mitigate these kinds of threats with quantum computers we need some advanced quantum-based cryptographic systems. The research orientation towards this is tremendous in recent years, and many excellent approaches have been reported. In this article, we discuss the probable approaches of the quantum cryptographic systems from implementation point of views to handle the post-quantum cryptographic attacks.