Biblio
Cyber reconnaissance is the process of gathering information about a target network for the purpose of compromising systems within that network. Network-based deception has emerged as a promising approach to disrupt attackers' reconnaissance efforts. However, limited work has been done so far on measuring the effectiveness of network-based deception. Furthermore, given that Software-Defined Networking (SDN) facilitates cyber deception by allowing network traffic to be modified and injected on-the-fly, understanding the effectiveness of employing different cyber deception strategies is critical. In this paper, we present a model to study the reconnaissance surface of a network and model the process of gathering information by attackers as interactions with a cyber defensive system that may use deception. To capture the evolution of the attackers' knowledge during reconnaissance, we design a belief system that is updated by using a Bayesian inference method. For the proposed model, we present two metrics based on KL-divergence to quantify the effectiveness of network deception. We tested the model and the two metrics by conducting experiments with a simulated attacker in an SDN-based deception system. The results of the experiments match our expectations, providing support for the model and proposed metrics.
Moving target defense (MTD) is becoming popular with the advancements in Software Defined Networking (SDN) technologies. With centralized management through SDN, changing the network attributes such as routes to escape from attacks is simple and fast. Yet, the available alternate routes are bounded by the network topology, and a persistent attacker that continuously perform the reconnaissance can extract the whole link-map of the network. To address this issue, we propose to use virtual shadow networks (VSNs) by applying Network Function Virtualization (NFV) abilities to the network in order to deceive attacker with the fake topology information and not reveal the actual network topology and characteristics. We design this approach under a formal framework for Internet Service Provider (ISP) networks and apply it to the recently emerged indirect DDoS attacks, namely Crossfire, for evaluation. The results show that attacker spends more time to figure out the network behavior while the costs on the defender and network operations are negligible until reaching a certain network size.
Traditional address scanning attacks mainly rely on the naive 'brute forcing' approach, where the entire IPv4 address space is exhaustively searched by enumerating different possibilities. However, such an approach is inefficient for IPv6 due to its vast subnet size (i.e., 264). As a result, it is widely assumed that address scanning attacks are less feasible in IPv6 networks. In this paper, we evaluate new IPv6 reconnaissance techniques in real IPv6 networks and expose how to leverage the Domain Name System (DNS) for IPv6 network reconnaissance. We collected IPv6 addresses from 5 regions and 100,000 domains by exploiting DNS reverse zone and DNSSEC records. We propose a DNS Guard (DNSG) to efficiently detect DNS reconnaissance attacks in IPv6 networks. DNSG is a plug and play component that could be added to the existing infrastructure. We implement DNSG using Bro and Suricata. Our results demonstrate that DNSG could effectively block DNS reconnaissance attacks.
Bitcoin is popular not only with consumers, but also with cybercriminals (e.g., in ransomware and online extortion, and commercial online child exploitation). Given the potential of Bitcoin to be involved in a criminal investigation, the need to have an up-to-date and in-depth understanding on the forensic acquisition and analysis of Bitcoins is crucial. However, there has been limited forensic research of Bitcoin in the literature. The general focus of existing research is on postmortem analysis of specific locations (e.g. wallets on mobile devices), rather than a forensic approach that combines live data forensics and postmortem analysis to facilitate the identification, acquisition, and analysis of forensic traces relating to the use of Bitcoins on a system. Hence, the latter is the focus of this paper where we present an open source tool for live forensic and postmortem analysing automatically. Using this open source tool, we describe a list of target artifacts that can be obtained from a forensic investigation of popular Bitcoin clients and Web Wallets on different web browsers installed on Windows 7 and Windows 10 platforms.
We developed a virtualization-based infringement incident response tool for cyber security training system using Cloud. This tool was developed by applying the concept of attack and defense which is the basic of military war game modeling and simulation. The main purpose of this software is to cultivate cyber security experts capable of coping with various situations to minimize the damage in the shortest time when an infringement incident occurred. This tool acquired the invaluable certificate from Korean government agency. This tool shall provide CBT type remote education such as scenario based infringement incident response training, hacking defense practice, and vulnerability measure practice. The tool works in Linux, Window operating system environments, and uses Korean e-government framework and secure coding to construct a situation similar to the actual information system. In the near future, Internet and devices connected to the Internet will be greatly enlarged, and cyber security threats will be diverse and widespread. It is expected that various kinds of hacking will be attempted in an advanced types using artificial intelligence technology. Therefore, we are working on applying the artificial intelligence technology to the current infringement incident response tool to cope with these evolving threats.
The need for data exchange and storage is currently increasing. The increased need for data exchange and storage also increases the need for data exchange devices and media. One of the most commonly used media exchanges and data storage is the USB Flash Drive. USB Flash Drive are widely used because they are easy to carry and have a fairly large storage. Unfortunately, this increased need is not directly proportional to an increase in awareness of device security, both for USB flash drive devices and computer devices that are used as primary storage devices. This research shows the threats that can arise from the use of USB Flash Drive devices. The threat that is used in this research is the fork bomb implemented on an Arduino Pro Micro device that is converted to a USB Flash drive. The purpose of the Fork Bomb is to damage the memory performance of the affected devices. As a result, memory performance to execute the process will slow down. The use of a USB Flash drive as an attack vector with the fork bomb method causes users to not be able to access the operating system that was attacked. The results obtained indicate that the USB Flash Drive can be used as a medium of Fork Bomb attack on the Windows operating system.
Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.
The difficult of detecting, response, tracing the malicious behavior in cloud has brought great challenges to the law enforcement in combating cybercrimes. This paper presents a malicious behavior oriented framework of detection, emergency response, traceability, and digital forensics in cloud environment. A cloud-based malicious behavior detection mechanism based on SDN is constructed, which implements full-traffic flow detection technology and malicious virtual machine detection based on memory analysis. The emergency response and traceability module can clarify the types of the malicious behavior and the impacts of the events, and locate the source of the event. The key nodes and paths of the infection topology or propagation path of the malicious behavior will be located security measure will be dispatched timely. The proposed IaaS service based forensics module realized the virtualization facility memory evidence extraction and analysis techniques, which can solve volatile data loss problems that often happened in traditional forensic methods.
Phishing is typically deployed as an attack vector in the initial stages of a hacking endeavour. Due to it low-risk rightreward nature it has seen a widespread adoption, and detecting it has become a challenge in recent times. This paper proposes a novel means of detecting phishing websites using a Generative Adversarial Network. Taking into account the internal structure and external metadata of a website, the proposed approach uses a generator network which generates both legitimate as well as synthetic phishing features to train a discriminator network. The latter then determines if the features are either normal or phishing websites, before improving its detection accuracy based on the classification error. The proposed approach is evaluated using two different phishing datasets and is found to achieve a detection accuracy of up to 94%.
As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.
Nowadays, phishing is one of the most usual web threats with regards to the significant growth of the World Wide Web in volume over time. Phishing attackers always use new (zero-day) and sophisticated techniques to deceive online customers. Hence, it is necessary that the anti-phishing system be real-time and fast and also leverages from an intelligent phishing detection solution. Here, we develop a reliable detection system which can adaptively match the changing environment and phishing websites. Our method is an online and feature-rich machine learning technique to discriminate the phishing and legitimate websites. Since the proposed approach extracts different types of discriminative features from URLs and webpages source code, it is an entirely client-side solution and does not require any service from the third-party. The experimental results highlight the robustness and competitiveness of our anti-phishing system to distinguish the phishing and legitimate websites.
In this work, we applied deep semantic analysis, and machine learning and deep learning techniques, to capture inherent characteristics of email text, and classify emails as phishing or non -phishing.
As an important institutional element, government information security is not only related to technical issues but also to human resources. Various types of information security instruments in an institution cannot provide maximum protection as long as employees still have a low level of information security awareness. This study aims to measure the level of information security awareness of government employees through case studies at the Directorate General of ABC (DG ABC) in Indonesia. This study used two methods, behavior approach through phishing simulation and knowledge approach through a questionnaire on a Likert scale. The simulation results were analyzed on a percentage scale and compared to the results of the questionnaire to determine the level of employees' information security awareness and determine which method was the best. Results show a significant relationship between the simulation results and the questionnaire results. Among the employees who opened the email, 69% clicked on the link that led to the camouflage page and through the questionnaire, it was found that the information security awareness level of DG ABC employees was at the level of 79.32% which was the lower limit of the GOOD category.
Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.
Phishing is the major problem of the internet era. In this era of internet the security of our data in web is gaining an increasing importance. Phishing is one of the most harmful ways to unknowingly access the credential information like username, password or account number from the users. Users are not aware of this type of attack and later they will also become a part of the phishing attacks. It may be the losses of financial found, personal information, reputation of brand name or trust of brand. So the detection of phishing site is necessary. In this paper we design a framework of phishing detection using URL.
Denial of Service (DoS) attacks have been a serious security concern, as no service is, in principle, protected against them. Although a Dolev-Yao intruder with unlimited resources can trivially render any service unavailable, DoS attacks do not necessarily have to be carried out by such (extremely) powerful intruders. It is useful in practice and more challenging for formal protocol verification to determine whether a service is vulnerable even to resource-bounded intruders that cannot generate or intercept arbitrary large volumes of traffic. This paper proposes a novel, more refined intruder model where the intruder can only consume at most some specified amount of resources in any given time window. Additionally, we propose protocol theories that may contain timeouts and specify service resource usage during protocol execution. In contrast to the existing resource-conscious protocol verification models, our model allows finer and more subtle analysis of DoS problems. We illustrate the power of our approach by representing a number of classes of DoS attacks, such as, Slow, Asymmetric and Amplification DoS attacks, exhausting different types of resources of the target, such as, number of workers, processing power, memory, and network bandwidth. We show that the proposed DoS problem is undecidable in general and is PSPACE-complete for the class of resource-bounded, balanced systems. Finally, we implemented our formal verification model in the rewriting logic tool Maude and analyzed a number of DoS attacks in Maude using Rewriting Modulo SMT in an automated fashion.
Load balancing and IP anycast are traffic routing algorithms used to speed up delivery of the Domain Name System. In case of a DDoS attack or an overload condition, the value of these protocols is critical, as they can provide intrinsic DDoS mitigation with the failover alternatives. In this paper, we present a methodology for predicting the next DNS response in the light of a potential redirection to less busy servers, in order to mitigate the size of the attack. Our experiments were conducted using data from the Nov. 2015 attack of the Root DNS servers and Logistic Regression, k-Nearest Neighbors, Support Vector Machines and Random Forest as our primary classifiers. The models were able to successfully predict up to 83% of responses for Root Letters that operated on a small number of sites and consequently suffered the most during the attacks. On the other hand, regarding DNS requests coming from more distributed Root servers, the models demonstrated lower accuracy. Our analysis showed a correlation between the True Positive Rate metric and the number of sites, as well as a clear need for intelligent management of traffic in load balancing practices.
Software defined networks (SDNs) represent new centralized network architecture that facilitates the deployment of services, applications and policies from the upper layers, relatively the management and control planes to the lower layers the data plane and the end user layer. SDNs give several advantages in terms of agility and flexibility, especially for mobile operators and for internet service providers. However, the implementation of these types of networks faces several technical challenges and security issues. In this paper we will focus on SDN's security issues and we will propose the implementation of a centralized security layer named AM-SecP. The proposed layer is linked vertically to all SDN layers which ease packets inspections and detecting intrusions. The purpose of this architecture is to stop and to detect malware infections, we do this by denying services and tunneling attacks without encumbering the networks by expensive operations and high calculation cost. The implementation of the proposed framework will be also made to demonstrate his feasibility and robustness.
Upon the new paradigm of Cellular Internet of Things, through the usage of technologies such as Narrowband IoT (NB-IoT), a massive amount of IoT devices will be able to use the mobile network infrastructure to perform their communications. However, it would be beneficial for these devices to use the same security mechanisms that are present in the cellular network architecture, so that their connections to the application layer could see an increase on security. As a way to approach this, an identity management and provisioning mechanism, as well as an identity federation between an IoT platform and the cellular network is proposed as a way to make an IoT device deemed worthy of using the cellular network and perform its actions.