Visible to the public Biblio

Found 879 results

Filters: Keyword is authentication  [Clear All Filters]
2023-05-30
Shawky, Mahmoud A., Abbasi, Qammer H., Imran, Muhammad Ali, Ansari, Shuja, Taha, Ahmad.  2022.  Cross-Layer Authentication based on Physical-Layer Signatures for Secure Vehicular Communication. 2022 IEEE Intelligent Vehicles Symposium (IV). :1315—1320.
In recent years, research has focused on exploiting the inherent physical (PHY) characteristics of wireless channels to discriminate between different spatially separated network terminals, mitigating the significant costs of signature-based techniques. In this paper, the legitimacy of the corresponding terminal is firstly verified at the protocol stack’s upper layers, and then the re-authentication process is performed at the PHY-layer. In the latter, a unique PHY-layer signature is created for each transmission based on the spatially and temporally correlated channel attributes within the coherence time interval. As part of the verification process, the PHY-layer signature can be used as a message authentication code to prove the packet’s authenticity. Extensive simulation has shown the capability of the proposed scheme to support high detection probability at small signal-to-noise ratios. In addition, security evaluation is conducted against passive and active attacks. Computation and communication comparisons are performed to demonstrate that the proposed scheme provides superior performance compared to conventional cryptographic approaches.
2023-05-12
Lai, Chengzhe, Wang, Menghua, Zheng, Dong.  2022.  SPDT: Secure and Privacy-Preserving Scheme for Digital Twin-based Traffic Control. 2022 IEEE/CIC International Conference on Communications in China (ICCC). :144–149.
With the increasing complexity of the driving environment, more and more attention has been paid to the research on improving the intelligentization of traffic control. Among them, the digital twin-based internet of vehicle can establish a mirror system on the cloud to improve the efficiency of communication between vehicles, provide warning and safety instructions for drivers, avoid driving potential dangers. To ensure the security and effectiveness of data sharing in traffic control, this paper proposes a secure and privacy-preserving scheme for digital twin-based traffic control. Specifically, in the data uploading phase, we employ a group signature with a time-bound keys technique to realize data source authentication with efficient members revocation and privacy protection, which can ensure that data can be securely stored on cloud service providers after it synchronizes to its twin. In the data sharing stage, we employ the secure and efficient attribute-based access control technique to provide flexible and efficient data sharing, in which the parameters of a specific sub-policy can be stored during the first decryption and reused in subsequent data access containing the same sub-policy, thus reducing the computing complexity. Finally, we analyze the security and efficiency of the scheme theoretically.
ISSN: 2377-8644
Zhu, Lu, Wei, Yehua, Jiang, Haoran, Long, Jing.  2022.  CAN FD Message Authentication Enhances Parallel in-vehicle Applications Security. 2022 2nd International Conference on Intelligent Technology and Embedded Systems (ICITES). :155–160.
Controller Area Network with Flexible Data-rate(CAN FD) has the advantages of high bandwidth and data field length to meet the higher communication requirements of parallel in-vehicle applications. If the CAN FD lacking the authentication security mechanism is used, it is easy to make it suffer from masquerade attack. Therefore, a two-stage method based on message authentication is proposed to enhance the security of it. In the first stage, an anti-exhaustive message exchange and comparison algorithm is proposed. After exchanging the message comparison sequence, the lower bound of the vehicle application and redundant message space is obtained. In the second stage, an enhanced round accumulation algorithm is proposed to enhance security, which adds Message Authentication Codes(MACs) to the redundant message space in a way of fewer accumulation rounds. Experimental examples show that the proposed two-stage approach enables both small-scale and large-scale parallel in-vehicle applications security to be enhanced. Among them, in the Adaptive Cruise Control Application(ACCA), when the laxity interval is 1300μs, the total increased MACs is as high as 388Bit, and the accumulation rounds is as low as 40 rounds.
2023-04-28
Naik, Badavath Shravan, Tripathy, Somanath, Mohanty, Susil Kumar.  2022.  MuSigRDT: MultiSig Contract based Reliable Data Transmission in Social Internet of Vehicle. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1763–1768.
Social Internet of Vehicle (SIoV) has emerged as one of the most promising applications for vehicle communication, which provides safe and comfortable driving experience. It reduces traffic jams and accidents, thereby saving public resources. However, the wrongly communicated messages would cause serious issues, including life threats. So it is essential to ensure the reliability of the message before acting on considering that. Existing works use cryptographic primitives like threshold authentication and ring signatures, which incurs huge computation and communication overheads, and the ring signature size grew linearly with the threshold value. Our objective is to keep the signature size constant regardless of the threshold value. This work proposes MuSigRDT, a multisignature contract based data transmission protocol using Schnorr digital signature. MuSigRDT provides incentives, to encourage the vehicles to share correct information in real-time and participate honestly in SIoV. MuSigRDT is shown to be secure under Universal Composability (UC) framework. The MuSigRDT contract is deployed on Ethereum's Rinkeby testnet.
2023-04-14
T, Nirmalraj, Jebathangam, J..  2022.  A Novel Password Secure Mechanism using Reformation based Optimized Honey Encryption and Decryption Technique. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :877–880.
The exponential rise of online services has heightened awareness of safeguarding the various applications that cooperate with and provide Internet users. Users must present their credentials, such as user name and secret code, to the servers to be authorized. This sensitive data should be secured from being exploited due to numerous security breaches, resulting in criminal activity. It is vital to secure systems against numerous risks. This article offers a novel approach to protecting against brute force attacks. A solution is presented where the user obtains the keypad on each occurrence. Following the establishment of the keypad, the webserver produces an encrypted password for the user's Computer/device authentication. The encrypted password will be used for authentication; users must type the amended one-time password (OTP) every time they access the website. This research protects passwords using reformation-based encryption and decryption and optimal honey encryption (OH-E) and decryption.
ISSN: 2768-5330
Pahlevi, Rizka Reza, Suryani, Vera, Nuha, Hilal Hudan, Yasirandi, Rahmat.  2022.  Secure Two-Factor Authentication for IoT Device. 2022 10th International Conference on Information and Communication Technology (ICoICT). :407–412.
The development of IoT has penetrated various sectors. The development of IoT devices continues to increase and is predicted to reach 75 billion by 2025. However, the development of IoT devices is not followed by security developments. Therefore, IoT devices can become gateways for cyber attacks, including brute force and sniffing attacks. Authentication mechanisms can be used to ward off attacks. However, the implementation of authentication mechanisms on IoT devices is challenging. IoT devices are dominated by constraint devices that have limited computing. Thus, conventional authentication mechanisms are not suitable for use. Two-factor authentication using RFID and fingerprint can be a solution in providing an authentication mechanism. Previous studies have proposed a two-factor authentication mechanism using RFID and fingerprint. However, previous research did not pay attention to message exchange security issues and did not provide mutual authentication. This research proposes a secure mutual authentication protocol using two-factor RFID and fingerprint using MQTT protocol. Two processes support the authentication process: the registration process and authentication. The proposed protocol is tested based on biometric security by measuring the false acceptance rate (FAR) and false rejection rate (FRR) on the fingerprint, measuring brute force attacks, and measuring sniffing attacks. The test results obtained the most optimal FAR and FRR at the 80% threshold. Then the equal error rate (ERR) on FAR and FRR is around 59.5%. Then, testing brute force and sniffing attacks found that the proposed protocol is resistant to both attacks.
Yuvaraj, D., Anitha, M, Singh, Brijesh, Karyemsetty, Nagarjuna, Krishnamoorthy, R., Arun, S..  2022.  Systematic Review of Security Authentication based on Block Chain. 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC). :768–771.
One of the fifth generation’s most promising solutions for addressing the network system capacity issue is the ultra-dense network. However, a new problem arises because the user equipment secure access is made up of access points that are independent, transitory, and dynamic. The APs are independent and equal in this. It is possible to think of it as a decentralized access network. The access point’s coverage is less than the standard base stations. The user equipment will interface with access points more frequently as it moves, which is a problem. The current 4G Authentication and Key Agreement method, however, is unable to meet this need for quick and frequent authentication. This study means to research how blockchain innovation is being utilized in production network the executives, as well as its forthcoming purposes and arising patterns. To more readily comprehend the direction of important exploration and illuminate the benefits, issues, and difficulties in the blockchain-production network worldview, a writing overview and a logical evaluation of the current examination on blockchain-based supply chains were finished. Multifaceted verification strategies have as of late been utilized as possible guards against blockchain attacks. To further develop execution, scatter administration, and mechanize processes, inventory network tasks might be upset utilizing blockchain innovation
Paul, Shuva, Chen, Yu-Cheng, Grijalva, Santiago, Mooney, Vincent John.  2022.  A Cryptographic Method for Defense Against MiTM Cyber Attack in the Electricity Grid Supply Chain. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
Critical infrastructures such as the electricity grid can be severely impacted by cyber-attacks on its supply chain. Hence, having a robust cybersecurity infrastructure and management system for the electricity grid is a high priority. This paper proposes a cyber-security protocol for defense against man-in-the-middle (MiTM) attacks to the supply chain, which uses encryption and cryptographic multi-party authentication. A cyber-physical simulator is utilized to simulate the power system, control system, and security layers. The correctness of the attack modeling and the cryptographic security protocol against this MiTM attack is demonstrated in four different attack scenarios.
ISSN: 2472-8152
Priya, A, Ganesh, Abishek, Akil Prasath, R, Jeya Pradeepa, K.  2022.  Cracking CAPTCHAs using Deep Learning. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :437–443.
In this decade, digital transactions have risen exponentially demanding more reliable and secure authentication systems. CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) system plays a major role in these systems. These CAPTCHAs are available in character sequence, picture-based, and audio-based formats. It is very essential that these CAPTCHAs should be able to differentiate a computer program from a human precisely. This work tests the strength of text-based CAPTCHAs by breaking them using an algorithm built on CNN (Convolution Neural Network) and RNN (Recurrent Neural Network). The algorithm is designed in such a way as an attempt to break the security features designers have included in the CAPTCHAs to make them hard to be cracked by machines. This algorithm is tested against the synthetic dataset generated in accordance with the schemes used in popular websites. The experiment results exhibit that the model has shown a considerable performance against both the synthetic and real-world CAPTCHAs.
Raavi, Rupendra, Alqarni, Mansour, Hung, Patrick C.K.  2022.  Implementation of Machine Learning for CAPTCHAs Authentication Using Facial Recognition. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Web-based technologies are evolving day by day and becoming more interactive and secure. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is one of the security features that help detect automated bots on the Web. Earlier captcha was complex designed text-based, but some optical recognition-based algorithms can be used to crack it. That is why now the captcha system is image-based. But after the arrival of strong image recognition algorithms, image-based captchas can also be cracked nowadays. In this paper, we propose a new captcha system that can be used to differentiate real humans and bots on the Web. We use advanced deep layers with pre-trained machine learning models for captchas authentication using a facial recognition system.
2023-03-31
Vikram, Aditya, Kumar, Sumit, Mohana.  2022.  Blockchain Technology and its Impact on Future of Internet of Things (IoT) and Cyber Security. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :444–447.
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.
Sahoo, Subhaluxmi.  2022.  Cancelable Retinal Biometric method based on maximum bin computation and histogram bin encryption using modified Hill cipher. 2022 IEEE Delhi Section Conference (DELCON). :1–5.

Cancelable biometric is a new era of technology that deals with the protection of the privacy content of a person which itself helps in protecting the identity of a person. Here the biometric information instead of being stored directly on the authentication database is transformed into a non-invertible coded format that will be utilized for providing access. The conversion into an encrypted code requires the provision of an encryption key from the user side. Both invertible and non-invertible coding techniques are there but non-invertible one provides additional security to the user. In this paper, a non-invertible cancelable biometric method has been proposed where the biometric image information is canceled and encoded into a code using a user-provided encryption key. This code is generated from the image histogram after continuous bin updation to the maximal value and then it is encrypted by the Hill cipher. This code is stored on the database instead of biometric information. The technique is applied to a set of retinal information taken from the Indian Diabetic Retinopathy database.

Saraswat, Deepti, Ladhiya, Karan, Bhattacharya, Pronaya, Zuhair, Mohd.  2022.  PHBio: A Pallier Homomorphic Biometric Encryption Scheme in Healthcare 4.0 Ecosystems. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :306–312.

In healthcare 4.0 ecosystems, authentication of healthcare information allows health stakeholders to be assured that data is originated from correct source. Recently, biometric based authentication is a preferred choice, but as the templates are stored on central servers, there are high chances of copying and generating fake biometrics. An adversary can forge the biometric pattern, and gain access to critical health systems. Thus, to address the limitation, the paper proposes a scheme, PHBio, where an encryption-based biometric system is designed prior before storing the template to the server. Once a user provides his biometrics, the authentication process does not decrypt the data, rather uses a homomorphic-enabled Paillier cryptosystem. The scheme presents the encryption and the comparison part which is based on euclidean distance (EUD) strategy between the user input and the stored template on the server. We consider the minimum distance, and compare the same with a predefined threshold distance value to confirm a biometric match, and authenticate the user. The scheme is compared against parameters like accuracy, false rejection rates (FARs), and execution time. The proposed results indicate the validity of the scheme in real-time health setups.

2023-03-17
Gabsi, Souhir, Kortli, Yassin, Beroulle, Vincent, Kieffer, Yann, Belgacem, Hamdi.  2022.  Adoption of a Secure ECC-based RFID Authentication Protocol. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :69–74.
A single RFID (Radio Frequency Identification) is a technology for the remote identification of objects or people. It integrates a reader that receives the information contained in an RFID tag through an RFID authentication protocol. RFID provides several security services to protect the data transmitted between the tag and the reader. However, these advantages do not prevent an attacker to access this communication and remaining various security and privacy issues in these systems. Furthermore, with the rapid growth of IoT, there is an urgent need of security authentication and confidential data protection. Authentication protocols based on elliptic curve cryptographic (ECC) were widely investigated and implemented to guarantee protection against the various attacks that can suffer an RFID system. In this paper, we are going to focus on a comparative study between the most efficient ECC-based RFID authentication protocols that are already published, and study their security against the different wireless attacks.
Gharpure, Nisha, Rai, Aradhana.  2022.  Vulnerabilities and Threat Management in Relational Database Management Systems. 2022 5th International Conference on Advances in Science and Technology (ICAST). :369–374.
Databases are at the heart of modern applications and any threats to them can seriously endanger the safety and functionality of applications relying on the services offered by a DBMS. It is therefore pertinent to identify key risks to the secure operation of a database system. This paper identifies the key risks, namely, SQL injection, weak audit trails, access management issues and issues with encryption. A malicious actor can get help from any of these issues. It can compromise integrity, availability and confidentiality of the data present in database systems. The paper also identifies various means and ways to defend against these issues and remedy them. This paper then proceeds to identify from the literature, the potential solutions to these ameliorate the threat from these vulnerabilities. It proposes the usage of encryption to protect the data from being breached and leveraging encrypted databases such as CryptoDB. Better access control norms are suggested to prevent unauthorized access, modification and deletion of the data. The paper also recommends ways to prevent SQL injection attacks through techniques such as prepared statements.
Ayoub, Harith Ghanim.  2022.  Dynamic Iris-Based Key Generation Scheme during Iris Authentication Process. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :364–368.
The robustness of the encryption systems in all of their types depends on the key generation. Thus, an encryption system can be said robust if the generated key(s) are very complex and random which prevent attackers or other analytical tools to break the encryption system. This paper proposed an enhanced key generation based on iris image as biometric, to be implemented dynamically in both of authentication process and data encryption. The captured iris image during the authentication process will be stored in a cloud server to be used in the next login to decrypt data. While in the current login, the previously stored iris image in the cloud server would be used to decrypt data in the current session. The results showed that the generated key meets the required randomness for several NIST tests that is reasonable for one use. The strength of the proposed approach produced unrepeated keys for encryption and each key will be used once. The weakness of the produced key may be enhanced to become more random.
2023-03-03
Korecko, Stefan, Haluska, Matus, Pleva, Matus, Skudal, Markus Hoff, Bours, Patrick.  2022.  EMG Data Collection for Multimodal Keystroke Analysis. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :351–355.
User authentication based on muscle tension manifested during password typing seems to be an interesting additional layer of security. It represents another way of verifying a person’s identity, for example in the context of continuous verification. In order to explore the possibilities of such authentication method, it was necessary to create a capturing software that records and stores data from EMG (electromyography) sensors, enabling a subsequent analysis of the recorded data to verify the relevance of the method. The work presented here is devoted to the design, implementation and evaluation of such a solution. The solution consists of a protocol and a software application for collecting multimodal data when typing on a keyboard. Myo armbands on both forearms are used to capture EMG and inertial data while additional modalities are collected from a keyboard and a camera. The user experience evaluation of the solution is presented, too.
ISSN: 2770-5226
Islam, Ashhadul, Belhaouari, Samir Brahim.  2022.  Analysing keystroke dynamics using wavelet transforms. 2022 IEEE International Carnahan Conference on Security Technology (ICCST). :1–5.
Many smartphones are lost every year, with a meager percentage recovered. In many cases, users with malicious intent access these phones and use them to acquire sensitive data. There is a need for continuous monitoring and surveillance in smartphones, and keystroke dynamics play an essential role in identifying whether a phone is being used by its owner or an impersonator. Also, there is a growing need to replace expensive 2-tier authentication methods like One-time passwords (OTP) with cheaper and more robust methods. The methods proposed in this paper are applied to existing data and are proven to train more robust classifiers. A novel feature extraction method by wavelet transformation is demonstrated to convert keystroke data into features. The comparative study of classifiers trained on the extracted features vs. features extracted by existing methods shows that the processes proposed perform better than the state-of-art feature extraction methods.
ISSN: 2153-0742
Piugie, Yris Brice Wandji, Di Manno, Joël, Rosenberger, Christophe, Charrier, Christophe.  2022.  Keystroke Dynamics based User Authentication using Deep Learning Neural Networks. 2022 International Conference on Cyberworlds (CW). :220–227.
Keystroke dynamics is one solution to enhance the security of password authentication without adding any disruptive handling for users. Industries are looking for more security without impacting too much user experience. Considered as a friction-less solution, keystroke dynamics is a powerful solution to increase trust during user authentication without adding charge to the user. In this paper, we address the problem of user authentication considering the keystroke dynamics modality. We proposed a new approach based on the conversion of behavioral biometrics data (time series) into a 3D image. This transformation process keeps all the characteristics of the behavioral signal. The time series do not receive any filtering operation with this transformation and the method is bijective. This transformation allows us to train images based on convolutional neural networks. We evaluate the performance of the authentication system in terms of Equal Error Rate (EER) on a significant dataset and we show the efficiency of the proposed approach on a multi-instance system.
ISSN: 2642-3596
Ayati, Seyed Aref, Naji, Hamid Reza.  2022.  A Secure mechanism to protect UAV communications. 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). :1–6.
This paper presents a novel authentication method based on a distributed version of Kerberos for UAVs. One of the major problems of UAVs in recent years has been cyber-attacks which allow attackers to control the UAV or access its information. The growing use of UAVs has encouraged us to investigate the methods of their protection especially authentication of their users. In the past, the Kerberos system was rarely used for authentication in UAV systems. In our proposed method, based on a distributed version of Kerberos, we can authenticate multiple ground stations, users, and controllers for one or more UAVs. This method considers most of the security aspects to protect UAV systems mainly in the authentication phase and improves the security of UAVs and ground control stations and their communications considerably.
ISSN: 2771-1374
Krishnamoorthy, R., Arun, S., Sujitha, N., Vijayalakshmi, K.M, Karthiga, S., Thiagarajan, R..  2022.  Proposal of HMAC based Protocol for Message Authenication in Kerberos Authentication Protocol. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1443–1447.
Kerberos protocol is a derivative type of server used for the authentication purpose. Kerberos is a network-based authentication protocol which communicates the tickets from one network to another in a secured manner. Kerberos protocol encrypts the messages and provides mutual authentication. Kerberos uses the symmetric cryptography which uses the public key to strengthen the data confidentiality. The KDS Key Distribution System gives the center of securing the messages. Kerberos has certain disadvantages as it provides public key at both ends. In this proposed approach, the Kerberos are secured by using the HMAC Hash-based Message Authentication Code which is used for the authentication of message for integrity and authentication purpose. It verifies the data by authentication, verifies the e-mail address and message integrity. The computer network and security are authenticated by verifying the user or client. These messages which are transmitted and delivered have to be integrated by authenticating it. Kerberos authentication is used for the verification of a host or user. Authentication is based on the tickets on credentials in a secured way. Kerberos gives faster authentication and uses the unique ticketing system. It supports the authentication delegation with faster efficiency. These encrypt the standard by encrypting the tickets to pass the information.
Ajvazi, Grela, Halili, Festim.  2022.  SOAP messaging to provide quality of protection through Kerberos Authentication. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
Service-oriented architecture (SOA) is a widely adopted architecture that uses web services, which have become increasingly important in the development and integration of applications. Its purpose is to allow information system technologies to interact by exchanging messages between sender and recipient using the simple object access protocol (SOAP), an XML document, or the HTTP protocol. We will attempt to provide an overview and analysis of standards in the field of web service security, specifically SOAP messages, using Kerberos authentication, which is a computer network security protocol that provides users with high security for requests between two or more hosts located in an unreliable location such as the internet.Everything that has to do with Kerberos has to deal with systems that rely on data authentication.
ISSN: 2157-8702
Zhou, Ziyi, Han, Xing, Chen, Zeyuan, Nan, Yuhong, Li, Juanru, Gu, Dawu.  2022.  SIMulation: Demystifying (Insecure) Cellular Network based One-Tap Authentication Services. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :534–546.
A recently emerged cellular network based One-Tap Authentication (OTAuth) scheme allows app users to quickly sign up or log in to their accounts conveniently: Mobile Network Operator (MNO) provided tokens instead of user passwords are used as identity credentials. After conducting a first in-depth security analysis, however, we have revealed several fundamental design flaws among popular OTAuth services, which allow an adversary to easily (1) perform unauthorized login and register new accounts as the victim, (2) illegally obtain identities of victims, and (3) interfere OTAuth services of legitimate apps. To further evaluate the impact of our identified issues, we propose a pipeline that integrates both static and dynamic analysis. We examined 1,025/894 Android/iOS apps, each app holding more than 100 million installations. We confirmed 396/398 Android/iOS apps are affected. Our research systematically reveals the threats against OTAuth services. Finally, we provide suggestions on how to mitigate these threats accordingly.
ISSN: 2158-3927
Xu, Bo, Zhang, Xiaona, Cao, Heyang, Li, Yu, Wang, Li-Ping.  2022.  HERMS: A Hierarchical Electronic Records Management System Based on Blockchain with Distributed Key Generation. 2022 IEEE International Conference on Services Computing (SCC). :295–304.
In a traditional electronic records management system (ERMS), the legitimacy of the participants’ identities is verified by Certificate Authority (CA) certifications. The authentication process is complicated and takes up lots of memory. To overcome this problem, we construct a hierarchical electronic records management system by using a Hierarchical Identity-Based Cryptosystem (HIBC) to replace CA. However, there exist the threats of malicious behavior from a private key generator (PKG) or an entity in the upper layer because the private keys are generated by a PKG or upper entity in HIBC. Thus, we adopt distributed key generation protocols in HIBC to avoid the threats. Finally, we use blockchain technology in our system to achieve decentralized management.
2023-02-28
Kim, Byoungkoo, Yoon, Seungyong, Kang, Yousung.  2022.  Reinforcement of IoT Open Platform Security using PUF -based Device Authentication. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1969—1971.
Recently, as the use of Internet of Things (IoT) devices has expanded, security issues have emerged. As a solution to the IoT security problem, PUF (Physical Unclonable Function) technology has been proposed, and research on key generation or device authentication using it has been actively conducted. In this paper, we propose a method to apply PUF-based device authentication technology to the Open Connectivity Foundation (OCF) open platform. The proposed method can greatly improve the security level of IoT open platform by utilizing PUF technology.