Visible to the public Biblio

Filters: Keyword is ECC  [Clear All Filters]
2023-07-13
Mammenp, Asha, KN, Sreehari, Bhakthavatchalu, Ramesh.  2022.  Implementation of Efficient Hybrid Encryption Technique. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–4.
Security troubles of restricted sources communications are vital. Existing safety answers aren't sufficient for restricted sources gadgets in phrases of Power Area and Ef-ficiency‘. Elliptic curves cryptosystem (ECC) is area efficent for restricted sources gadgets extra than different uneven cryp-to systems because it gives a better safety degree with equal key sizes compared to different present techniques. In this paper, we studied a lightweight hybrid encryption technique that makes use of set of rules primarily based totally on AES for the Plain text encription and Elliptic Curve Diffie-Hellman (ECDH) protocol for Key encryption. The simplicity of AES implementation makes it light weight and the complexity of ECDH make it secure. The design is simulated using Spyder Tool, Modelsim and Implemented using Xilinx Vivado the effects display that the proposed lightweight Model offers a customary security degree with decreased computing capacity. we proposed a key authentication system for enhanced security along with an Idea to implement the project with multimedia input on FPGA
2023-03-17
Gabsi, Souhir, Kortli, Yassin, Beroulle, Vincent, Kieffer, Yann, Belgacem, Hamdi.  2022.  Adoption of a Secure ECC-based RFID Authentication Protocol. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :69–74.
A single RFID (Radio Frequency Identification) is a technology for the remote identification of objects or people. It integrates a reader that receives the information contained in an RFID tag through an RFID authentication protocol. RFID provides several security services to protect the data transmitted between the tag and the reader. However, these advantages do not prevent an attacker to access this communication and remaining various security and privacy issues in these systems. Furthermore, with the rapid growth of IoT, there is an urgent need of security authentication and confidential data protection. Authentication protocols based on elliptic curve cryptographic (ECC) were widely investigated and implemented to guarantee protection against the various attacks that can suffer an RFID system. In this paper, we are going to focus on a comparative study between the most efficient ECC-based RFID authentication protocols that are already published, and study their security against the different wireless attacks.
He, Ze, Li, Shaoqing.  2022.  A Design of Key Generation Unit Based on SRAM PUF. 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT). :136–140.
In the era of big data, information security is faced with many threats, among which memory data security of intelligent devices is an important link. Attackers can read the memory of specific devices, and then steal secrets, alter data, affect the operation of intelligent devices, and bring security threats. Data security is usually protected by encryption algorithm for device ciphertext conversion, so the safe generation and use of key becomes particularly important. In this paper, based on the advantages of SRAM PUF, such as real-time generation, power failure and disappearance, safety and reliability, a key generation unit is designed and implemented. BCH code is used as the error correction algorithm to generate 128-bit stable key, which provides a guarantee for the safe storage of intelligent devices.
2022-11-22
Fugkeaw, Somchart, Sanchol, Pattavee.  2021.  Proxy-Assisted Digital Signing Scheme for Mobile Cloud Computing. 2021 13th International Conference on Knowledge and Smart Technology (KST). :78—83.
This paper proposes a lightweight digital signing scheme for supporting document signing on mobile devices connected to cloud computing. We employ elliptic curve (ECC) digital signature algorithm (ECDSA) for key pair generation done at mobile device and introduce outsourced proxy (OSP) to decrypt the encrypted file and compute hash value of the files stored in the cloud system. In our model, a mobile client invokes fixed-sized message digests to be signed with a private key stored in the device and produces the digital signature. Then, the signature is returned to the proxy for embedding it onto the original file. To this end, the trust between proxy and mobile devices is guaranteed by PKI technique. Based on the lightweight property of ECC and the modular design of our OSP, our scheme delivers the practical solution that allows mobile users to create their own digital signatures onto documents in a secure and efficient way. We also present the implementation details including system development and experimental evaluation to demonstrate the efficiency of our proposed system.
2022-05-06
Bansal, Malti, Gupta, Shubham, Mathur, Siddhant.  2021.  Comparison of ECC and RSA Algorithm with DNA Encoding for IoT Security. 2021 6th International Conference on Inventive Computation Technologies (ICICT). :1340—1343.
IoT is still an emerging technology without a lot of standards around it, which makes it difficult to integrate it into existing businesses, what's more, with restricted assets and expanding gadgets that essentially work with touchy information. Thus, information safety has become urgent for coders and clients. Thus, painstakingly chosen and essentially tested encryption calculations should be utilized to grow the gadgets productively, to decrease the danger of leaking the delicate information. This investigation looks at the ECC calculation (Elliptic Curve Cryptography) and Rivest-Shamir-Adleman (RSA) calculation. Furthermore, adding the study of DNA encoding operation in DNA computing with ECC to avoid attackers from getting access to the valuable data.
2022-05-05
Goyal, Jitendra, Ahmed, Mushtaq, Gopalani, Dinesh.  2021.  Empirical Study of Standard Elliptic Curve Domain Parameters for IoT Devices. 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1—6.
In recent times, security and privacy concerns associated with IoT devices have caught the attention of research community. The problem of securing IoT devices is immensely aggravating due to advancement in technology. These IoT devices are resource-constraint i.e. in terms of power, memory, computation, etc., so they are less capable to secure themselves. So we need a better approach to secure IoT devices within the limited resources. Several studies state that for these lightweight IoT devices Elliptic Curve Cryptography (ECC) suits perfectly. But there are several elliptic curve domain parameter standards, which may be used for different security levels. When any ECC based product is deployed then the selection of a suitable elliptic curve standard according to usability is become very important. So we have to choose one suitable standard domain parameter for the required security level. In this paper, two different elliptic curve standard domain parameters named secp256k1 and secp192k1 proposed by an industry consortium named Standards for Efficient Cryptography Group (SECG) [1] are implemented and then analyzed their performances metrics. The performance of each domain parameter is measured in computation time.
2022-02-22
Yadav, Ashok Kumar.  2021.  Significance of Elliptic Curve Cryptography in Blockchain IoT with Comparative Analysis of RSA Algorithm. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :256—262.
In the past few years, the blockchain emerged as peer-to-peer distributed ledger technology for recording transactions, maintained by many peers without any central trusted regulatory authority through distributed public-key cryptography and consensus mechanism. It has not only given the birth of cryptocurrencies, but it also resolved various security, privacy and transparency issues of decentralized systems. This article discussed the blockchain basics overview, architecture, and blockchain security components such as hash function, Merkle tree, digital signature, and Elliptic curve cryptography (ECC). In addition to the core idea of blockchain, we focus on ECC's significance in the blockchain. We also discussed why RSA and other key generation mechanisms are not suitable for blockchain-based IoT applications. We also analyze many possible blockchain-based applications where ECC algorithm is better than other algorithms concerning security and privacy assurance. At the end of the article, we will explain the comparative analysis of ECC and RSA.
2021-09-21
Taranum, Fahmina, Sarvat, Ayesha, Ali, Nooria, Siddiqui, Shamekh.  2020.  Detection and Prevention of Blackhole Node. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1–7.
Mobile Adhoc networks (MANETs) comprises of mobile devices or nodes that are connected wirelessly and have no infrastructure. Detecting malicious activities in MANETs is a challenging task as they are vulnerable to attacks where the performance of the entire network degrades. Hence it is necessary to provide security to the network so that the nodes are prone to attack. Selecting a good routing protocol in MANET is also important as frequent change of topology causes the route reply to not arrive at the source node. In this paper, R-AODV (Reverse Adhoc On-Demand Distance Vector) protocol along with ECC (Elliptic Key Cryptography) algorithm is designed and implemented to detect and to prevent the malicious node and to secure data transmission against blackhole attack. The main objective is to keep the data packets secure. ECC provides a smaller key size compared to other public-key encryption and eliminates the requirement of pre-distributed keys also makes the path more secure against blackhole attacks in a MANET. The performance of this proposed system is simulated by using the NS-2.35 network simulator. Simulation results show that the proposed protocol provides good experimental results on various metrics like throughput, end-to-end delay, and PDR. Analysis of the results points to an improvement in the overall network performance.
2021-09-16
Kulkarni, Pallavi, Khanai, Rajashri, Bindagi, Gururaj.  2020.  A Hybrid Encryption Scheme for Securing Images in the Cloud. 2020 International Conference on Inventive Computation Technologies (ICICT). :795–800.
With the introduction of Cloud computing, a new era of computing has begun. Cloud has the ability to provide flexible, cost effective pay-as-you-go service. In the modern day computing, outsourcing of data/multimedia into the cloud has become an effective trend as cloud provides storage as a service, platform/software as a service, infrastructure as a service etc. Seamless exchange of data /multimedia is made possible ensuring the data available anytime, anywhere. Even though cloud based services offer many advantages, data owners are still hesitant to keep their data with the third party. Confidentiality, Integrity, Privacy and Non-repudiation are the major concerns of the outsourced data. To secure the data exchange between users and the cloud, many traditional security approaches are proposed. In this paper, a hybrid encryption technique to secure the images is proposed. The scheme uses Elliptic Curve Cryptography to generate the secret key, which in turn used for DES and AES algorithms.
2021-08-11
He, Guorong, Dong, Chen, Liu, Yulin, Fan, Xinwen.  2020.  IPlock: An Effective Hybrid Encryption for Neuromorphic Systems IP Core Protection. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:612—616.
Recent advances in resistive synaptic devices have enabled the emergence of brain-inspired smart chips. These chips can execute complex cognitive tasks in digital signal processing precisely and efficiently using an efficient neuromorphic system. The neuromorphic synapses used in such chips, however, are different from the traditional integrated circuit architectures, thereby weakening their resistance to malicious transformation and intellectual property (IP) counterfeiting. Accordingly, in this paper, we propose an effective hybrid encryption methodology for IP core protection in neuromorphic computing systems, in-corporating elliptic curve cryptography and SM4 simultaneously. Experimental results confirm that the proposed method can implement real-time encryption of any number of crossbar arrays in neuromorphic systems accurately, while reducing the time overhead by 14.40%-26.08%.
2021-02-15
Klann, D., Aftowicz, M., Kabin, I., Dyka, Z., Langendoerfer, P..  2020.  Integration and Implementation of four different Elliptic Curves in a single high-speed Design considering SCA. 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS). :1–2.
Modern communication systems rely heavily on cryptography to ensure authenticity, confidentiality and integrity of exchanged messages. Elliptic Curve Cryptography 1 (ECC) is one of the common used standard methods for encrypting and signing messages. In this paper we present our implementation of a design supporting four different NIST Elliptic Curves. The design supports two B-curves (B-233, B-283) and two P-curves (P-224, P-256). The implemented designs are sharing the following hardware components bus, multiplier, alu and registers. By implementing the 4 curves in a single design and reusing some resources we reduced the area 20 by 14% compared to a design without resource sharing. Compared to a pure software solution running on an Arm Cortex A9 operating at 1GHz, our design ported to a FPGA is 1.2 to 6 times faster.
2021-01-25
ManJiang, D., Kai, C., ZengXi, W., LiPeng, Z..  2020.  Design of a Cloud Storage Security Encryption Algorithm for Power Bidding System. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1875–1879.
To solve the problem of poor security and performance caused by traditional encryption algorithm in the cloud data storage of power bidding system, we proposes a hybrid encryption method based on symmetric encryption and asymmetric encryption. In this method, firstly, the plaintext upload file is divided into several blocks according to the proportion, then the large file block is encrypted by symmetrical encryption algorithm AES to ensure the encryption performance, and then the small file block and AES key are encrypted by asymmetric encryption algorithm ECC to ensure the file encryption strength and the security of key transmission. Finally, the ciphertext file is generated and stored in the cloud storage environment to prevent sensitive files Pieces from being stolen and destroyed. The experimental results show that the hybrid encryption method can improve the anti-attack ability of cloud storage files, ensure the security of file storage, and have high efficiency of file upload and download.
2021-01-18
Sebbah, A., Kadri, B..  2020.  A Privacy and Authentication Scheme for IoT Environments Using ECC and Fuzzy Extractor. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV). :1–5.
The internet of things (IoT) is consisting of many complementary elements which have their own specificities and capacities. These elements are gaining new application and use cases in our lives. Nevertheless, they open a negative horizon of security and privacy issues which must be treated delicately before the deployment of any IoT. Recently, different works emerged dealing with the same branch of issues, like the work of Yuwen Chen et al. that is called LightPriAuth. LightPriAuth has several drawbacks and weakness against various popular attacks such as Insider attack and stolen smart card. Our objective in this paper is to propose a novel solution which is “authentication scheme with three factor using ECC and fuzzy extractor” to ensure security and privacy. The obtained results had proven the superiority of our scheme's performances compared to that of LightPriAuth which, additionally, had defeated the weaknesses left by LightPriAuth.
2020-10-29
Sajyth, RB, Sujatha, G.  2018.  Design of Data Confidential and Reliable Bee Clustering Routing Protocol in MANET. 2018 International Conference on Computer Communication and Informatics (ICCCI). :1—7.
Mobile ad hoc network (MANET) requires extraneous energy effectualness and legion intelligence for which a best clustered based approach is pertained called the “Bee-Ad Hoc-C”. In MANET the mechanism of multi-hop routing is imperative but may leads to a challenging issue like lack of data privacy during communication. ECC (Elliptical Curve Cryptography) is integrated with the Bee clustering approach to provide an energy efficient and secure data delivery system. Even though it ensures data confidentiality, data reliability is still disputable such as data dropping attack, Black hole attack (Attacker router drops the data without forwarding to destination). In such cases the technique of overhearing is utilized by the neighbor routers and the packet forwarding statistics are measured based on the ratio between the received and forwarded packets. The presence of attack is detected if the packet forwarding ratio is poor in the network which paves a way to the alternate path identification for a reliable data transmission. The proposed work is an integration of SC-AODV along with ECC in Bee clustering approach with an extra added overhearing technique which n on the whole ensures data confidentiality, data reliability and energy efficiency.
2020-08-10
Almajed, Hisham N., Almogren, Ahmad S..  2019.  SE-Enc: A Secure and Efficient Encoding Scheme Using Elliptic Curve Cryptography. IEEE Access. 7:175865–175878.
Many applications use asymmetric cryptography to secure communications between two parties. One of the main issues with asymmetric cryptography is the need for vast amounts of computation and storage. While this may be true, elliptic curve cryptography (ECC) is an approach to asymmetric cryptography used widely in low computation devices due to its effectiveness in generating small keys with a strong encryption mechanism. The ECC decreases power consumption and increases device performance, thereby making it suitable for a wide range of devices, ranging from sensors to the Internet of things (IoT) devices. It is necessary for the ECC to have a strong implementation to ensure secure communications, especially when encoding a message to an elliptic curve. It is equally important for the ECC to secure the mapping of the message to the curve used in the encryption. This work objective is to propose a trusted and proofed scheme that offers authenticated encryption (AE) for both encoding and mapping a message to the curve. In addition, this paper provides analytical results related to the security requirements of the proposed scheme against several encryption techniques. Additionally, a comparison is undertaken between the SE-Enc and other state-of-the-art encryption schemes to evaluate the performance of each scheme.
Yue, Tongxu, Wang, Chuang, Zhu, Zhi-xiang.  2019.  Hybrid Encryption Algorithm Based on Wireless Sensor Networks. 2019 IEEE International Conference on Mechatronics and Automation (ICMA). :690–694.
Based on the analysis of existing wireless sensor networks(WSNs) security vulnerability, combining the characteristics of high encryption efficiency of the symmetric encryption algorithm and high encryption intensity of asymmetric encryption algorithm, a hybrid encryption algorithm based on wireless sensor networks is proposed. Firstly, by grouping plaintext messages, this algorithm uses advanced encryption standard (AES) of symmetric encryption algorithm and elliptic curve encryption (ECC) of asymmetric encryption algorithm to encrypt plaintext blocks, then uses data compression technology to get cipher blocks, and finally connects MAC address and AES key encrypted by ECC to form a complete ciphertext message. Through the description and implementation of the algorithm, the results show that the algorithm can reduce the encryption time, decryption time and total running time complexity without losing security.
2020-07-30
Gauniyal, Rishav, Jain, Sarika.  2019.  IoT Security in Wireless Devices. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :98—102.

IoT is evolving as a combination of interconnected devices over a particular network. In the proposed paper, we discuss about the security of IoT system in the wireless devices. IoT security is the platform in which the connected devices over the network are safeguarded over internet of things framework. Wireless devices play an eminent role in this kind of networks since most of the time they are connected to the internet. Accompanied by major users cannot ensure their end to end security in the IoT environment. However, connecting these devices over the internet via using IoT increases the chance of being prone to the serious issues that may affect the system and its data if they are not protected efficiently. In the proposed paper, the security of IoT in wireless devices will be enhanced by using ECC. Since the issues related to security are becoming common these days, an attempt has been made in this proposed paper to enhance the security of IoT networks by using ECC for wireless devices.

2020-07-06
Saffar, Zahra, Mohammadi, Siamak.  2019.  Fault tolerant non-linear techniques for scalar multiplication in ECC. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :104–113.
Elliptic curve cryptography (ECC) has shorter key length than other asymmetric cryptography algorithms such as RSA with the same security level. Existing faults in cryptographic computations can cause faulty results. If a fault occurs during encryption, false information will be sent to the destination, in which case channel error detection codes are unable to detect the fault. In this paper, we consider the error detection in elliptic curve scalar multiplication point, which is the most important operation in ECC. Our technique is based on non-linear error detection codes. We consider an algorithm for scalar multiplication point proposed by Microsoft research group. The proposed technique in our methods has less overhead for additions (36.36%) and multiplications (34.84%) in total, compared to previous works. Also, the proposed method can detect almost 100% of injected faults.
2020-06-26
Salman, Ahmad, El-Tawab, Samy.  2019.  Efficient Hardware/Software Co-Design of Elliptic-Curve Cryptography for the Internet of Things. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets). :1—6.

The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.

Bedoui, Mouna, Bouallegue, Belgacem, Hamdi, Belgacem, Machhout, Mohsen.  2019.  An Efficient Fault Detection Method for Elliptic Curve Scalar Multiplication Montgomery Algorithm. 2019 IEEE International Conference on Design Test of Integrated Micro Nano-Systems (DTS). :1—5.

Elliptical curve cryptography (ECC) is being used more and more in public key cryptosystems. Its main advantage is that, at a given security level, key sizes are much smaller compared to classical asymmetric cryptosystems like RSA. Smaller keys imply less power consumption, less cryptographic computation and require less memory. Besides performance, security is another major problem in embedded devices. Cryptosystems, like ECC, that are considered mathematically secure, are not necessarily considered safe when implemented in practice. An attacker can monitor these interactions in order to mount attacks called fault attacks. A number of countermeasures have been developed to protect Montgomery Scalar Multiplication algorithm against fault attacks. In this work, we proposed an efficient countermeasure premised on duplication scheme and the scrambling technique for Montgomery Scalar Multiplication algorithm against fault attacks. Our approach is simple and easy to hardware implementation. In addition, we perform injection-based error simulations and demonstrate that the error coverage is about 99.996%.

2020-06-22
Long, Yihong, Cheng, Minyang.  2019.  Secret Sharing Based SM2 Digital Signature Generation using Homomorphic Encryption. 2019 15th International Conference on Computational Intelligence and Security (CIS). :252–256.
SM2 is an elliptic curve public key cryptography algorithm released by the State Cryptography Administration of China. It includes digital signature, data encryption and key exchange schemes. To meet specific application requirements, such as to protect the user's private key in software only implementation, and to facilitate secure cloud cryptography computing, secret sharing based SM2 signature generation schemes have been proposed in the literature. In this paper a new such kind of scheme based upon additively homomorphic encryption is proposed. The proposed scheme overcomes the drawback that the existing schemes have and is more secure. It is useful in various application scenarios.
2020-04-20
Gupta, Himanshu, Mondal, Subhash, Ray, Srayan, Giri, Biswajit, Majumdar, Rana, Mishra, Ved P.  2019.  Impact of SQL Injection in Database Security. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :296–299.
In today's world web applications have become an instant means for information broadcasting. At present, man has become so dependent on web applications that everything done through electronic means like e-banking, e-shopping, online payment of bills etc. Due to an unauthorized admittance might threat customer's or user's confidentiality, integrity and authority. SQL injection considered as most Spartan dangerous coercions to the databases of web applications. current scenario databases are highly susceptible to SQL Injection[4] . SQL Injection is one of the most popular and dangerous hacking or cracking technique . In this work authors projected a novel approach to mitigate SQL Injection Attacks in a database. We have illustrated a technique or method prevent SQLIA by incorporating a hybrid encryption in form of Advanced Encryption Standard (AES) and Elliptical Curve Cryptography (ECC) [5]. In this research paper integrated approach of encryption method is followed to prevent the databases of the web applications against SQL Injection Attack. Incidentally if an invader gains access to the database, then it can cause severe damage and ends up with retrieves data or information. So to prevent these type of attacks a combined approach is projected , Advanced Encryption Standard (AES) at login phase to prevent the unauthorized access to databases and on the other hand Elliptical Curve Cryptography (ECC) to encode the database so that without the key no one can access the database information [3]. This research paper illustrates the technique to prevent SQL Injection Attack.
2020-01-06
Hu, Xiaoming, Jiang, Wenrong, Ma, Chuang, Yu, Chengcheng.  2018.  Cryptoanalyzing and Improving for Directed Signature Scheme and the Proxy Signature Scheme. 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1–9.
Forward secure proxy signature (FoSPS) solves the security drawback of private key exposure problem of generating the private key of each time interval. Directed signature scheme solves the public signature verification problem in traditional digital signature by designating the constant one as the signature verifier. Due to excellent properties, the two signature schemes have attracted the research of many experts. Recently, based on the Elliptic curve cryptography (ECC), a new FoSPS scheme and directed signature scheme were proposed. In this paper, we analyze the two schemes and present which the either of both schemes is insecure and do not satisfy the unforgeability. In other words, anyone is able to forge a valid signature but the one does not know the signer's secret key. In the same time, we give the main reasons why the enemy is able to forge the signature by analyzing the two schemes respectively. And we also present a simple improvement idea to overcome existing problems without adding extra computational cost which can make them applied in some environments such as e-medical information system.
2019-11-04
Vegda, Hiral, Modi, Nimesh.  2018.  Secure and Efficient Approach to Prevent Ad Hoc Network Attacks Using Intrusion Detection System. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :129-133.

In Ad hoc networks the main purpose is communication without infrastructure and there are many implementations already done on that. There is little effort done for security to prevent threats in ad hoc networks (like MANETs). It is already proven that; there is no any centralized mechanism for defence against threats, such as a firewall, an intrusion detection system, or a proxy in ad hoc networks. Ad hoc networks are very convenient due to its features like self-maintenance, self-organizing and providing wireless communication. In Ad hoc networks there is no fixed infrastructure in which every node works like simply a router which stores and forwards packet to final destination. Due to these dynamic topology features, Ad hoc networks are anywhere, anytime. Therefore, it is necessary to make a secure mechanism for the ad hoc components so that with flexibility they have that security also. This paper shows the secure and flexible implementation about to protect any ad hoc networks. This proposed system design is perfect solution to provide security with flexibility by providing a hybrid system which combines ECC and MAES to detect and prevent Ad hoc network attacks using Intrusion detection system. The complete proposed system designed on NS 2.35 software using Ubuntu (Linux) OS.

2019-10-15
Toradmalle, D., Singh, R., Shastri, H., Naik, N., Panchidi, V..  2018.  Prominence Of ECDSA Over RSA Digital Signature Algorithm. 2018 2nd International Conference on 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :253–257.

Digital signatures are replacing paper-based work to make life easier for customers and employees in various industries. We rigorously use RSA and Elliptic Curve Cryptography (ECC) for public key cryptographic algorithms. Nowadays ECDSA (Elliptical Curve Digital Signature Algorithm) gaining more popularity than the RSA algorithm because of the better performance of ECDSA over RSA. The main advantage of ECC over RSA is ECC provides the same level of security with less key size and overhead than RSA. This paper focuses on a brief review of the performance of ECDSA and RSA in various aspects like time, security and power. This review tells us about why ECC has become the latest trend in the present cryptographic scenario.