Biblio
Despite the latest initiatives and research efforts to increase user privacy in digital scenarios, identity-related cybercrimes such as identity theft, wrong identity or user transactions surveillance are growing. In particular, blanket surveillance that might be potentially accomplished by Identity Providers (IdPs) contradicts the data minimization principle laid out in GDPR. Hence, user movements across Service Providers (SPs) might be tracked by malicious IdPs that become a central dominant entity, as well as a single point of failure in terms of privacy and security, putting users at risk when compromised. To cope with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-preserving, yet user-friendly, and distributed identity management system that addresses the data minimization challenge in both online and offline scenarios. Thus, OLYMPUS divides the role of the IdP among various authorities by relying on threshold cryptography, thereby preventing user impersonation and surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS framework, including requirements considered, the proposed architecture, a series of use cases as well as the privacy analysis from the legal point of view.
Using the blockchain technology to store the privatedocuments of individuals will help make data more reliable and secure, preventing the loss of data and unauthorized access. The Consensus algorithm along with the hash algorithms maintains the integrity of data simultaneously providing authentication and authorization. The paper incorporates the block chain and the Identity Based Encryption management concept. The Identity based Management system allows the encryption of the user's data as well as their identity and thus preventing them from Identity theft and fraud. These two technologies combined will result in a more secure way of storing the data and protecting the privacy of the user.
The growing prevalence of Internet-of-Things (IoT) technology has led to an increase in the development of heterogeneous smart applications. Smart applications may involve a collaborative participation between IoT devices. Participation of IoT devices for specific application requires a tamper-proof identity to be generated and stored, in order to completely represent the device, as well as to eliminate the possibility of identity spoofing and presence of rogue devices in a network. In this paper, we present a composite Identity-of-Things (IDoT) approach on IoT devices with permissioned blockchain implementation for distributed identity management model. Our proposed approach considers both application and device domains in generating the composite identity. In addition, the use of permissioned blockchain for identity storage and verification allows the identity to be immutable. A simulation has been carried out to demonstrate the application of the proposed identity management model.
Digital identity is the key element of digital transformation in representing any real-world entity in the digital form. To ensure a successful digital future the requirement for an effective digital identity is paramount, especially as demand increases for digital services. Several Identity Management (IDM) systems are developed to cope with identity effectively, nonetheless, existing IDM systems have some limitations corresponding to identity and its management such as sovereignty, storage and access control, security, privacy and safeguarding, all of which require further improvement. Self-Sovereign Identity (SSI) is an emerging IDM system which incorporates several required features to ensure that identity is sovereign, secure, reliable and generic. It is an evolving IDM system, thus it is essential to analyse its various features to determine its effectiveness in coping with the dynamic requirements of identity and its current challenges. This paper proposes numerous governing principles of SSI to analyse any SSI ecosystem and its effectiveness. Later, based on the proposed governing principles of SSI, it performs a comparative analysis of the two most popular SSI ecosystems uPort and Sovrin to present their effectiveness and limitations.
Managing identity across an ever-growing digital services landscape has become one of the most challenging tasks for security experts. Over the years, several Identity Management (IDM) systems were introduced and adopted to tackle with the growing demand of an identity. In this series, a recently emerging IDM system is Self-Sovereign Identity (SSI) which offers greater control and access to users regarding their identity. This distinctive feature of the SSI IDM system represents a major development towards the availability of sovereign identity to users. uPort is an emerging open-source identity management system providing sovereign identity to users, organisations, and other entities. As an emerging identity management system, it requires meticulous analysis of its architecture, working, operational services, efficiency, advantages and limitations. Therefore, this paper contributes towards achieving all of these objectives. Firstly, it presents the architecture and working of the uPort identity management system. Secondly, it develops a Decentralized Application (DApp) to demonstrate and evaluate its operational services and efficiency. Finally, based on the developed DApp and experimental analysis, it presents the advantages and limitations of the uPort identity management system.
Internet of Things (IoT) systems are becoming widely used, which makes them to be a high-value target for both hackers and crackers. From gaining access to sensitive information to using them as bots for complex attacks, the variety of advantages after exploiting different security vulnerabilities makes the security of IoT devices to be one of the most challenging desideratum for cyber security experts. In this paper, we will propose a new IoT system, designed to ensure five data principles: confidentiality, integrity, availability, authentication and authorization. The innovative aspects are both the usage of a web-based communication and a custom dynamic data request structure.
When communication about security to end users is ineffective, people frequently misinterpret the protection offered by a system. The discrepancy between the security users perceive a system to have and the actual system state can lead to potentially risky behaviors. It is thus crucial to understand how security perceptions are shaped by interface elements such as text-based descriptions of encryption. This article addresses the question of how encryption should be described to non-experts in a way that enhances perceived security. We tested the following within-subject variables in an online experiment (N=309): a) how to best word encryption, b) whether encryption should be described with a focus on the process or outcome, or both c) whether the objective of encryption should be mentioned d) when mentioning the objective of encryption, how to best describe it e) whether a hash should be displayed to the user. We also investigated the role of context (between subjects). The verbs "encrypt" and "secure" performed comparatively well at enhancing perceived security. Overall, participants stated that they felt more secure not knowing about the objective of encryption. When it is necessary to state the objective, positive wording of the objective of encryption worked best. We discuss implications and why using these results to design for perceived lack of security might be of interest as well. This leads us to discuss ethical concerns, and we give guidelines for the design of user interfaces where encryption should be communicated to end users.
Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.
With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.