Visible to the public Biblio

Filters: Keyword is program diagnostics  [Clear All Filters]
2018-02-21
Bojanova, I., Black, P. E., Yesha, Y..  2017.  Cryptography classes in bugs framework (BF): Encryption bugs (ENC), verification bugs (VRF), and key management bugs (KMN). 2017 IEEE 28th Annual Software Technology Conference (STC). :1–8.

Accurate, precise, and unambiguous definitions of software weaknesses (bugs) and clear descriptions of software vulnerabilities are vital for building the foundations of cybersecurity. The Bugs Framework (BF) comprises rigorous definitions and (static) attributes of bug classes, along with their related dynamic properties, such as proximate, secondary and tertiary causes, consequences, and sites. This paper presents an overview of previously developed BF classes and the new cryptography related classes: Encryption Bugs (ENC), Verification Bugs (VRF), and Key Management Bugs (KMN). We analyze corresponding vulnerabilities and provide their clear descriptions by applying the BF taxonomy. We also discuss the lessons learned and share our plans for expanding BF.

Zhou, G., Feng, Y., Bo, R., Chien, L., Zhang, X., Lang, Y., Jia, Y., Chen, Z..  2017.  GPU-Accelerated Batch-ACPF Solution for N-1 Static Security Analysis. IEEE Transactions on Smart Grid. 8:1406–1416.

Graphics processing unit (GPU) has been applied successfully in many scientific computing realms due to its superior performances on float-pointing calculation and memory bandwidth, and has great potential in power system applications. The N-1 static security analysis (SSA) appears to be a candidate application in which massive alternating current power flow (ACPF) problems need to be solved. However, when applying existing GPU-accelerated algorithms to solve N-1 SSA problem, the degree of parallelism is limited because existing researches have been devoted to accelerating the solution of a single ACPF. This paper therefore proposes a GPU-accelerated solution that creates an additional layer of parallelism among batch ACPFs and consequently achieves a much higher level of overall parallelism. First, this paper establishes two basic principles for determining well-designed GPU algorithms, through which the limitation of GPU-accelerated sequential-ACPF solution is demonstrated. Next, being the first of its kind, this paper proposes a novel GPU-accelerated batch-QR solver, which packages massive number of QR tasks to formulate a new larger-scale problem and then achieves higher level of parallelism and better coalesced memory accesses. To further improve the efficiency of solving SSA, a GPU-accelerated batch-Jacobian-Matrix generating and contingency screening is developed and carefully optimized. Lastly, the complete process of the proposed GPU-accelerated batch-ACPF solution for SSA is presented. Case studies on an 8503-bus system show dramatic computation time reduction is achieved compared with all reported existing GPU-accelerated methods. In comparison to UMFPACK-library-based single-CPU counterpart using Intel Xeon E5-2620, the proposed GPU-accelerated SSA framework using NVIDIA K20C achieves up to 57.6 times speedup. It can even achieve four times speedup when compared to one of the fastest multi-core CPU parallel computing solution using KLU library. The prop- sed batch-solving method is practically very promising and lays a critical foundation for many other power system applications that need to deal with massive subtasks, such as Monte-Carlo simulation and probabilistic power flow.

2018-02-15
Pan, J., Mao, X..  2017.  Detecting DOM-Sourced Cross-Site Scripting in Browser Extensions. 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). :24–34.

In recent years, with the advances in JavaScript engines and the adoption of HTML5 APIs, web applications begin to show a tendency to shift their functionality from the server side towards the client side, resulting in dense and complex interactions with HTML documents using the Document Object Model (DOM). As a consequence, client-side vulnerabilities become more and more prevalent. In this paper, we focus on DOM-sourced Cross-site Scripting (XSS), which is a kind of severe but not well-studied vulnerability appearing in browser extensions. Comparing with conventional DOM-based XSS, a new attack surface is introduced by DOM-sourced XSS where the DOM could become a vulnerable source as well besides common sources such as URLs and form inputs. To discover such vulnerability, we propose a detecting framework employing hybrid analysis with two phases. The first phase is the lightweight static analysis consisting of a text filter and an abstract syntax tree parser, which produces potential vulnerable candidates. The second phase is the dynamic symbolic execution with an additional component named shadow DOM, generating a document as a proof-of-concept exploit. In our large-scale real-world experiment, 58 previously unknown DOM-sourced XSS vulnerabilities were discovered in user scripts of the popular browser extension Greasemonkey.

2017-12-20
Mohammadi, M., Chu, B., Lipford, H. R..  2017.  Detecting Cross-Site Scripting Vulnerabilities through Automated Unit Testing. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :364–373.

The best practice to prevent Cross Site Scripting (XSS) attacks is to apply encoders to sanitize untrusted data. To balance security and functionality, encoders should be applied to match the web page context, such as HTML body, JavaScript, and style sheets. A common programming error is the use of a wrong encoder to sanitize untrusted data, leaving the application vulnerable. We present a security unit testing approach to detect XSS vulnerabilities caused by improper encoding of untrusted data. Unit tests for the XSS vulnerability are automatically constructed out of each web page and then evaluated by a unit test execution framework. A grammar-based attack generator is used to automatically generate test inputs. We evaluate our approach on a large open source medical records application, demonstrating that we can detect many 0-day XSS vulnerabilities with very low false positives, and that the grammar-based attack generator has better test coverage than industry best practices.

2017-12-12
Nadgowda, S., Duri, S., Isci, C., Mann, V..  2017.  Columbus: Filesystem Tree Introspection for Software Discovery. 2017 IEEE International Conference on Cloud Engineering (IC2E). :67–74.

Software discovery is a key management function to ensure that systems are free of vulnerabilities, comply with licensing requirements, and support advanced search for systems containing given software. Today, software is predominantly discovered through querying package management tools, or using rules that check for file metadata or contents. These approaches are inadequate as not every software is installed through package managers, and agile development practices lead to frequent deployment of software. Other approaches to software discovery use machine learning methods requiring training phase, or require maintaining knowledge bases. Columbus uses the knowledge of the software packaging practices that evolved over time, and uses the information embedded in the file system impression created by a software package to discover it. Columbus is able to discover software in 92% of all official Docker images. Further, Columbus can be used in problem diagnosis and drift detection situations to compare two different systems, or to determine the evolution of a system overtime.

2017-11-27
Mohammadi, M., Chu, B., Lipford, H. R., Murphy-Hill, E..  2016.  Automatic Web Security Unit Testing: XSS Vulnerability Detection. 2016 IEEE/ACM 11th International Workshop in Automation of Software Test (AST). :78–84.

Integrating security testing into the workflow of software developers not only can save resources for separate security testing but also reduce the cost of fixing security vulnerabilities by detecting them early in the development cycle. We present an automatic testing approach to detect a common type of Cross Site Scripting (XSS) vulnerability caused by improper encoding of untrusted data. We automatically extract encoding functions used in a web application to sanitize untrusted inputs and then evaluate their effectiveness by automatically generating XSS attack strings. Our evaluations show that this technique can detect 0-day XSS vulnerabilities that cannot be found by static analysis tools. We will also show that our approach can efficiently cover a common type of XSS vulnerability. This approach can be generalized to test for input validation against other types injections such as command line injection.

2017-03-08
Jilcott, S..  2015.  Securing the supply chain for commodity IT devices by automated scenario generation. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

Almost all commodity IT devices include firmware and software components from non-US suppliers, potentially introducing grave vulnerabilities to homeland security by enabling cyber-attacks via flaws injected into these devices through the supply chain. However, determining that a given device is free of any and all implementation flaws is computationally infeasible in the general case; hence a critical part of any vetting process is prioritizing what kinds of flaws are likely to enable potential adversary goals. We present Theseus, a four-year research project sponsored by the DARPA VET program. Theseus will provide technology to automatically map and explore the firmware/software (FW/SW) architecture of a commodity IT device and then generate attack scenarios for the device. From these device attack scenarios, Theseus then creates a prioritized checklist of FW/SW components to check for potential vulnerabilities. Theseus combines static program analysis, attack graph generation algorithms, and a Boolean satisfiability solver to automate the checklist generation workflow. We describe how Theseus exploits analogies between the commodity IT device problem and attack graph generation for networks. We also present a novel approach called Component Interaction Mapping to recover a formal model of a device's FW/SW architecture from which attack scenarios can be generated.

Chang, C., Liu, F., Liu, K..  2015.  Software Structure Analysis Using Network Theory. 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). :519–522.

Software structure analysis is crucial in software testing. Using complex network theory, we present a series of methods and build a two-layer network model for software analysis, including network metrics calculation and features extraction. Through identifying the critical functions and reused modules, we can reduce nearly 80% workload in software testing on average. Besides, the structure network shows some interesting features that can assist to understand the software more clearly.

2017-03-07
Masood, A., Java, J..  2015.  Static analysis for web service security - Tools amp; techniques for a secure development life cycle. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

In this ubiquitous IoT (Internet of Things) era, web services have become a vital part of today's critical national and public sector infrastructure. With the industry wide adaptation of service-oriented architecture (SOA), web services have become an integral component of enterprise software eco-system, resulting in new security challenges. Web services are strategic components used by wide variety of organizations for information exchange on the internet scale. The public deployments of mission critical APIs opens up possibility of software bugs to be maliciously exploited. Therefore, vulnerability identification in web services through static as well as dynamic analysis is a thriving and interesting area of research in academia, national security and industry. Using OWASP (Open Web Application Security Project) web services guidelines, this paper discusses the challenges of existing standards, and reviews new techniques and tools to improve services security by detecting vulnerabilities. Recent vulnerabilities like Shellshock and Heartbleed has shifted the focus of risk assessment to the application layer, which for majority of organization means public facing web services and web/mobile applications. RESTFul services have now become the new service development paradigm normal; therefore SOAP centric standards such as XML Encryption, XML Signature, WS-Security, and WS-SecureConversation are nearly not as relevant. In this paper we provide an overview of the OWASP top 10 vulnerabilities for web services, and discuss the potential static code analysis techniques to discover these vulnerabilities. The paper reviews the security issues targeting web services, software/program verification and security development lifecycle.

Gupta, M. K., Govil, M. C., Singh, G., Sharma, P..  2015.  XSSDM: Towards detection and mitigation of cross-site scripting vulnerabilities in web applications. 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2010–2015.

With the growth of the Internet, web applications are becoming very popular in the user communities. However, the presence of security vulnerabilities in the source code of these applications is raising cyber crime rate rapidly. It is required to detect and mitigate these vulnerabilities before their exploitation in the execution environment. Recently, Open Web Application Security Project (OWASP) and Common Vulnerabilities and Exposures (CWE) reported Cross-Site Scripting (XSS) as one of the most serious vulnerabilities in the web applications. Though many vulnerability detection approaches have been proposed in the past, existing detection approaches have the limitations in terms of false positive and false negative results. This paper proposes a context-sensitive approach based on static taint analysis and pattern matching techniques to detect and mitigate the XSS vulnerabilities in the source code of web applications. The proposed approach has been implemented in a prototype tool and evaluated on a public data set of 9408 samples. Experimental results show that proposed approach based tool outperforms over existing popular open source tools in the detection of XSS vulnerabilities.

2017-02-27
Li-xiong, Z., Xiao-lin, X., Jia, L., Lu, Z., Xuan-chen, P., Zhi-yuan, M., Li-hong, Z..  2015.  Malicious URL prediction based on community detection. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–7.

Traditional Anti-virus technology is primarily based on static analysis and dynamic monitoring. However, both technologies are heavily depended on application files, which increase the risk of being attacked, wasting of time and network bandwidth. In this study, we propose a new graph-based method, through which we can preliminary detect malicious URL without application file. First, the relationship between URLs can be found through the relationship between people and URLs. Then the association rules can be mined with confidence of each frequent URLs. Secondly, the networks of URLs was built through the association rules. When the networks of URLs were finished, we clustered the date with modularity to detect communities and every community represents different types of URLs. We suppose that a URL has association with one community, then the URL is malicious probably. In our experiments, we successfully captured 82 % of malicious samples, getting a higher capture than using traditional methods.

2015-05-06
Derhab, A., Bouras, A., Bin Muhaya, F., Khan, M.K., Yang Xiang.  2014.  Spam Trapping System: Novel security framework to fight against spam botnets. Telecommunications (ICT), 2014 21st International Conference on. :467-471.

In this paper, we inspire from two analogies: the warfare kill zone and the airport check-in system, to tackle the issue of spam botnet detection. We add a new line of defense to the defense-in-depth model called the third line. This line is represented by a security framework, named the Spam Trapping System (STS) and adopts the prevent-then-detect approach to fight against spam botnets. The framework exploits the application sandboxing principle to prevent the spam from going out of the host and detect the corresponding malware bot. We show that the proposed framework can ensure better security against malware bots. In addition, an analytical study demonstrates that the framework offers optimal performance in terms of detection time and computational cost in comparison to intrusion detection systems based on static and dynamic analysis.

2015-05-05
Kumar, S., Rama Krishna, C., Aggarwal, N., Sehgal, R., Chamotra, S..  2014.  Malicious data classification using structural information and behavioral specifications in executables. Engineering and Computational Sciences (RAECS), 2014 Recent Advances in. :1-6.

With the rise in the underground Internet economy, automated malicious programs popularly known as malwares have become a major threat to computers and information systems connected to the internet. Properties such as self healing, self hiding and ability to deceive the security devices make these software hard to detect and mitigate. Therefore, the detection and the mitigation of such malicious software is a major challenge for researchers and security personals. The conventional systems for the detection and mitigation of such threats are mostly signature based systems. Major drawback of such systems are their inability to detect malware samples for which there is no signature available in their signature database. Such malwares are known as zero day malware. Moreover, more and more malware writers uses obfuscation technology such as polymorphic and metamorphic, packing, encryption, to avoid being detected by antivirus. Therefore, the traditional signature based detection system is neither effective nor efficient for the detection of zero-day malware. Hence to improve the effectiveness and efficiency of malware detection system we are using classification method based on structural information and behavioral specifications. In this paper we have used both static and dynamic analysis approaches. In static analysis we are extracting the features of an executable file followed by classification. In dynamic analysis we are taking the traces of executable files using NtTrace within controlled atmosphere. Experimental results obtained from our algorithm indicate that our proposed algorithm is effective in extracting malicious behavior of executables. Further it can also be used to detect malware variants.

Aydin, A., Alkhalaf, M., Bultan, T..  2014.  Automated Test Generation from Vulnerability Signatures. Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh International Conference on. :193-202.

Web applications need to validate and sanitize user inputs in order to avoid attacks such as Cross Site Scripting (XSS) and SQL Injection. Writing string manipulation code for input validation and sanitization is an error-prone process leading to many vulnerabilities in real-world web applications. Automata-based static string analysis techniques can be used to automatically compute vulnerability signatures (represented as automata) that characterize all the inputs that can exploit a vulnerability. However, there are several factors that limit the applicability of static string analysis techniques in general: 1) undesirability of static string analysis requires the use of approximations leading to false positives, 2) static string analysis tools do not handle all string operations, 3) dynamic nature of the scripting languages makes static analysis difficult. In this paper, we show that vulnerability signatures computed for deliberately insecure web applications (developed for demonstrating different types of vulnerabilities) can be used to generate test cases for other applications. Given a vulnerability signature represented as an automaton, we present algorithms for test case generation based on state, transition, and path coverage. These automatically generated test cases can be used to test applications that are not analyzable statically, and to discover attack strings that demonstrate how the vulnerabilities can be exploited.
 

Coelho Martins da Fonseca, J.C., Amorim Vieira, M.P..  2014.  A Practical Experience on the Impact of Plugins in Web Security. Reliable Distributed Systems (SRDS), 2014 IEEE 33rd International Symposium on. :21-30.

In an attempt to support customization, many web applications allow the integration of third-party server-side plugins that offer diverse functionality, but also open an additional door for security vulnerabilities. In this paper we study the use of static code analysis tools to detect vulnerabilities in the plugins of the web application. The goal is twofold: 1) to study the effectiveness of static analysis on the detection of web application plugin vulnerabilities, and 2) to understand the potential impact of those plugins in the security of the core web application. We use two static code analyzers to evaluate a large number of plugins for a widely used Content Manage-ment System. Results show that many plugins that are current-ly deployed worldwide have dangerous Cross Site Scripting and SQL Injection vulnerabilities that can be easily exploited, and that even widely used static analysis tools may present disappointing vulnerability coverage and false positive rates.

Gupta, M.K., Govil, M.C., Singh, G..  2014.  Static analysis approaches to detect SQL injection and cross site scripting vulnerabilities in web applications: A survey. Recent Advances and Innovations in Engineering (ICRAIE), 2014. :1-5.

Dependence on web applications is increasing very rapidly in recent time for social communications, health problem, financial transaction and many other purposes. Unfortunately, presence of security weaknesses in web applications allows malicious user's to exploit various security vulnerabilities and become the reason of their failure. Currently, SQL Injection (SQLI) and Cross-Site Scripting (XSS) vulnerabilities are most dangerous security vulnerabilities exploited in various popular web applications i.e. eBay, Google, Facebook, Twitter etc. Research on defensive programming, vulnerability detection and attack prevention techniques has been quite intensive in the past decade. Defensive programming is a set of coding guidelines to develop secure applications. But, mostly developers do not follow security guidelines and repeat same type of programming mistakes in their code. Attack prevention techniques protect the applications from attack during their execution in actual environment. The difficulties associated with accurate detection of SQLI and XSS vulnerabilities in coding phase of software development life cycle. This paper proposes a classification of software security approaches used to develop secure software in various phase of software development life cycle. It also presents a survey of static analysis based approaches to detect SQL Injection and cross-site scripting vulnerabilities in source code of web applications. The aim of these approaches is to identify the weaknesses in source code before their exploitation in actual environment. This paper would help researchers to note down future direction for securing legacy web applications in early phases of software development life cycle.

2015-05-04
Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, Shi Chenjie.  2014.  Modelling Analysis and Auto-detection of Cryptographic Misuse in Android Applications. Dependable, Autonomic and Secure Computing (DASC), 2014 IEEE 12th International Conference on. :75-80.

Cryptographic misuse affects a sizeable portion of Android applications. However, there is only an empirical study that has been made about this problem. In this paper, we perform a systematic analysis on the cryptographic misuse, build the cryptographic misuse vulnerability model and implement a prototype tool Crypto Misuse Analyser (CMA). The CMA can perform static analysis on Android apps and select the branches that invoke the cryptographic API. Then it runs the app following the target branch and records the cryptographic API calls. At last, the CMA identifies the cryptographic API misuse vulnerabilities from the records based on the pre-defined model. We also analyze dozens of Android apps with the help of CMA and find that more than a half of apps are affected by such vulnerabilities.
 

2014-09-17
Chang Liu, Hicks, M., Shi, E..  2013.  Memory Trace Oblivious Program Execution. Computer Security Foundations Symposium (CSF), 2013 IEEE 26th. :51-65.

Cloud computing allows users to delegate data and computation to cloud service providers, at the cost of giving up physical control of their computing infrastructure. An attacker (e.g., insider) with physical access to the computing platform can perform various physical attacks, including probing memory buses and cold-boot style attacks. Previous work on secure (co-)processors provides hardware support for memory encryption and prevents direct leakage of sensitive data over the memory bus. However, an adversary snooping on the bus can still infer sensitive information from the memory access traces. Existing work on Oblivious RAM (ORAM) provides a solution for users to put all data in an ORAM; and accesses to an ORAM are obfuscated such that no information leaks through memory access traces. This method, however, incurs significant memory access overhead. This work is the first to leverage programming language techniques to offer efficient memory-trace oblivious program execution, while providing formal security guarantees. We formally define the notion of memory-trace obliviousness, and provide a type system for verifying that a program satisfies this property. We also describe a compiler that transforms a program into a structurally similar one that satisfies memory trace obliviousness. To achieve optimal efficiency, our compiler partitions variables into several small ORAM banks rather than one large one, without risking security. We use several example programs to demonstrate the efficiency gains our compiler achieves in comparison with the naive method of placing all variables in the same ORAM.