Biblio
Antifragile systems enhance their capabilities and become stronger when exposed to adverse conditions, stresses or attacks, making antifragility a desirable property for cyber defence systems that operate in contested military environments. Self-improvement in autonomic systems refers to the improvement of their self-* capabilities, so that they are able to (a) better handle previously known (anticipated) situations, and (b) deal with previously unknown (unanticipated) situations. In this position paper, we present a vision of using self-improvement through learning to achieve antifragility in autonomic cyber defence systems. We first enumerate some of the major challenges associated with realizing distributed self-improvement. We then propose a reference model for middleware frameworks for self-improving autonomic systems and a set of desirable features of such frameworks.
Autonomic networks and services are exposed to a large variety of security risks. The vulnerability management process plays a crucial role for ensuring their safe configurations and preventing security attacks. We focus in this survey on the assessment of vulnerabilities in autonomic environments. In particular, we analyze current methods and techniques contributing to the discovery, the description and the detection of these vulnerabilities. We also point out important challenges that should be faced in order to fully integrate this process into the autonomic management plane.