Visible to the public Biblio

Filters: Keyword is Autonomic systems  [Clear All Filters]
2022-01-25
Rouff, Christopher, Watkins, Lanier, Sterritt, Roy, Hariri, Salim.  2021.  SoK: Autonomic Cybersecurity - Securing Future Disruptive Technologies. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :66—72.
This paper is a systemization of knowledge of autonomic cybersecurity. Disruptive technologies, such as IoT, AI and autonomous systems, are becoming more prevalent and often have little or no cybersecurity protections. This lack of security is contributing to the expanding cybersecurity attack surface. The autonomic computing initiative was started to address the complexity of administering complex computing systems by making them self-managing. Autonomic systems contain attributes to address cyberattacks, such as self-protecting and self-healing that can secure new technologies. There has been a number of research projects on autonomic cybersecurity, with different approaches and target technologies, many of them disruptive. This paper reviews autonomic computing, analyzes research on autonomic cybersecurity, and provides a systemization of knowledge of the research. The paper concludes with identification of gaps in autonomic cybersecurity for future research.
2021-03-01
Houzé, É, Diaconescu, A., Dessalles, J.-L., Mengay, D., Schumann, M..  2020.  A Decentralized Approach to Explanatory Artificial Intelligence for Autonomic Systems. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :115–120.
While Explanatory AI (XAI) is attracting increasing interest from academic research, most AI-based solutions still rely on black box methods. This is unsuitable for certain domains, such as smart homes, where transparency is key to gaining user trust and solution adoption. Moreover, smart homes are challenging environments for XAI, as they are decentralized systems that undergo runtime changes. We aim to develop an XAI solution for addressing problems that an autonomic management system either could not resolve or resolved in a surprising manner. This implies situations where the current state of affairs is not what the user expected, hence requiring an explanation. The objective is to solve the apparent conflict between expectation and observation through understandable logical steps, thus generating an argumentative dialogue. While focusing on the smart home domain, our approach is intended to be generic and transferable to other cyber-physical systems offering similar challenges. This position paper focuses on proposing a decentralized algorithm, called D-CAN, and its corresponding generic decentralized architecture. This approach is particularly suited for SISSY systems, as it enables XAI functions to be extended and updated when devices join and leave the managed system dynamically. We illustrate our proposal via several representative case studies from the smart home domain.
2020-10-12
D'Angelo, Mirko, Gerasimou, Simos, Ghahremani, Sona, Grohmann, Johannes, Nunes, Ingrid, Pournaras, Evangelos, Tomforde, Sven.  2019.  On Learning in Collective Self-Adaptive Systems: State of Practice and a 3D Framework. 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). :13–24.
Collective self-adaptive systems (CSAS) are distributed and interconnected systems composed of multiple agents that can perform complex tasks such as environmental data collection, search and rescue operations, and discovery of natural resources. By providing individual agents with learning capabilities, CSAS can cope with challenges related to distributed sensing and decision-making and operate in uncertain environments. This unique characteristic of CSAS enables the collective to exhibit robust behaviour while achieving system-wide and agent-specific goals. Although learning has been explored in many CSAS applications, selecting suitable learning models and techniques remains a significant challenge that is heavily influenced by expert knowledge. We address this gap by performing a multifaceted analysis of existing CSAS with learning capabilities reported in the literature. Based on this analysis, we introduce a 3D framework that illustrates the learning aspects of CSAS considering the dimensions of autonomy, knowledge access, and behaviour, and facilitates the selection of learning techniques and models. Finally, using example applications from this analysis, we derive open challenges and highlight the need for research on collaborative, resilient and privacy-aware mechanisms for CSAS.
2020-06-01
Baruwal Chhetri, Mohan, Uzunov, Anton, Vo, Bao, Nepal, Surya, Kowalczyk, Ryszard.  2019.  Self-Improving Autonomic Systems for Antifragile Cyber Defence: Challenges and Opportunities. 2019 IEEE International Conference on Autonomic Computing (ICAC). :18–23.

Antifragile systems enhance their capabilities and become stronger when exposed to adverse conditions, stresses or attacks, making antifragility a desirable property for cyber defence systems that operate in contested military environments. Self-improvement in autonomic systems refers to the improvement of their self-* capabilities, so that they are able to (a) better handle previously known (anticipated) situations, and (b) deal with previously unknown (unanticipated) situations. In this position paper, we present a vision of using self-improvement through learning to achieve antifragility in autonomic cyber defence systems. We first enumerate some of the major challenges associated with realizing distributed self-improvement. We then propose a reference model for middleware frameworks for self-improving autonomic systems and a set of desirable features of such frameworks.

2015-05-06
Barrere, M., Badonnel, R., Festor, O..  2014.  Vulnerability Assessment in Autonomic Networks and Services: A Survey. Communications Surveys Tutorials, IEEE. 16:988-1004.

Autonomic networks and services are exposed to a large variety of security risks. The vulnerability management process plays a crucial role for ensuring their safe configurations and preventing security attacks. We focus in this survey on the assessment of vulnerabilities in autonomic environments. In particular, we analyze current methods and techniques contributing to the discovery, the description and the detection of these vulnerabilities. We also point out important challenges that should be faced in order to fully integrate this process into the autonomic management plane.