Visible to the public Biblio

Filters: Keyword is community detection  [Clear All Filters]
2022-08-12
Aguinaldo, Roberto Daniel, Solano, Geoffrey, Pontiveros, Marc Jermaine, Balolong, Marilen Parungao.  2021.  NAMData: A Web-application for the Network Analysis of Microbiome Data. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). :341–346.
Recent projects regarding the exploration of the functions of microbiomes within communities brought about a plethora of new data. That specific field of study is called Metagenomics and one of its more advancing approach is the application of network analysis. The paper introduces NAMData which is a web-application tool for the network analysis of microbiome data. The system handles the compositionality and sparsity nature of microbiome data by applying taxa filtration, normalization, and zero treatment. Furthermore, compositionally aware correlation estimators were used to compute for the correlation between taxa and the system divides the network into the positive and negative correlation network. NAMData aims to capitalize on the unique network features namely network visualization, centrality scores, and community detection. The system enables researchers to include network analysis in their analysis pipelines even without any knowledge of programming. Biological concepts can be integrated with the network findings gathered from the system to either support existing facts or form new insights.
2021-01-22
Burr, B., Wang, S., Salmon, G., Soliman, H..  2020.  On the Detection of Persistent Attacks using Alert Graphs and Event Feature Embeddings. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—4.
Intrusion Detection Systems (IDS) generate a high volume of alerts that security analysts do not have the resources to explore fully. Modelling attacks, especially the coordinated campaigns of Advanced Persistent Threats (APTs), in a visually-interpretable way is a useful approach for network security. Graph models combine multiple alerts and are well suited for visualization and interpretation, increasing security effectiveness. In this paper, we use feature embeddings, learned from network event logs, and community detection to construct and segment alert graphs of related alerts and networks hosts. We posit that such graphs can aid security analysts in investigating alerts and may capture multiple aspects of an APT attack. The eventual goal of this approach is to construct interpretable attack graphs and extract causality information to identify coordinated attacks.
2021-01-11
Zhao, F., Skums, P., Zelikovsky, A., Sevigny, E. L., Swahn, M. H., Strasser, S. M., Huang, Y., Wu, Y..  2020.  Computational Approaches to Detect Illicit Drug Ads and Find Vendor Communities Within Social Media Platforms. IEEE/ACM Transactions on Computational Biology and Bioinformatics. :1–1.
The opioid abuse epidemic represents a major public health threat to global populations. The role social media may play in facilitating illicit drug trade is largely unknown due to limited research. However, it is known that social media use among adults in the US is widespread, there is vast capability for online promotion of illegal drugs with delayed or limited deterrence of such messaging, and further, general commercial sale applications provide safeguards for transactions; however, they do not discriminate between legal and illegal sale transactions. These characteristics of the social media environment present challenges to surveillance which is needed for advancing knowledge of online drug markets and the role they play in the drug abuse and overdose deaths. In this paper, we present a computational framework developed to automatically detect illicit drug ads and communities of vendors.The SVM- and CNNbased methods for detecting illicit drug ads, and a matrix factorization based method for discovering overlapping communities have been extensively validated on the large dataset collected from Google+, Flickr and Tumblr. Pilot test results demonstrate that our computational methods can effectively identify illicit drug ads and detect vendor-community with accuracy. These methods hold promise to advance scientific knowledge surrounding the role social media may play in perpetuating the drug abuse epidemic.
2020-02-18
Fattahi, Saeideh, Yazdani, Reza, Vahidipour, Seyyed Mehdi.  2019.  Discovery of Society Structure in A Social Network Using Distributed Cache Memory. 2019 5th International Conference on Web Research (ICWR). :264–269.

Community structure detection in social networks has become a big challenge. Various methods in the literature have been presented to solve this challenge. Recently, several methods have also been proposed to solve this challenge based on a mapping-reduction model, in which data and algorithms are divided between different process nodes so that the complexity of time and memory of community detection in large social networks is reduced. In this paper, a mapping-reduction model is first proposed to detect the structure of communities. Then the proposed framework is rewritten according to a new mechanism called distributed cache memory; distributed cache memory can store different values associated with different keys and, if necessary, put them at different computational nodes. Finally, the proposed rewritten framework has been implemented using SPARK tools and its implementation results have been reported on several major social networks. The performed experiments show the effectiveness of the proposed framework by varying the values of various parameters.

2019-06-10
Cao, Cheng, Chen, Zhengzhang, Caverlee, James, Tang, Lu-An, Luo, Chen, Li, Zhichun.  2018.  Behavior-Based Community Detection: Application to Host Assessment In Enterprise Information Networks. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1977-1985.

Community detection in complex networks is a fundamental problem that attracts much attention across various disciplines. Previous studies have been mostly focusing on external connections between nodes (i.e., topology structure) in the network whereas largely ignoring internal intricacies (i.e., local behavior) of each node. A pair of nodes without any interaction can still share similar internal behaviors. For example, in an enterprise information network, compromised computers controlled by the same intruder often demonstrate similar abnormal behaviors even if they do not connect with each other. In this paper, we study the problem of community detection in enterprise information networks, where large-scale internal events and external events coexist on each host. The discovered host communities, capturing behavioral affinity, can benefit many comparative analysis tasks such as host anomaly assessment. In particular, we propose a novel community detection framework to identify behavior-based host communities in enterprise information networks, purely based on large-scale heterogeneous event data. We continue proposing an efficient method for assessing host's anomaly level by leveraging the detected host communities. Experimental results on enterprise networks demonstrate the effectiveness of our model.

2018-09-28
Ushijima-Mwesigwa, Hayato, Negre, Christian F. A., Mniszewski, Susan M..  2017.  Graph Partitioning Using Quantum Annealing on the D-Wave System. Proceedings of the Second International Workshop on Post Moores Era Supercomputing. :22–29.
Graph partitioning (GP) applications are ubiquitous throughout mathematics, computer science, chemistry, physics, bio-science, machine learning, and complex systems. Post Moore's era supercomputing has provided us an opportunity to explore new approaches for traditional graph algorithms on quantum computing architectures. In this work, we explore graph partitioning using quantum annealing on the D-Wave 2X machine. Motivated by a recently proposed graph-based electronic structure theory applied to quantum molecular dynamics (QMD) simulations, graph partitioning is used for reducing the calculation of the density matrix into smaller subsystems rendering the calculation more computationally efficient. Unconstrained graph partitioning as community clustering based on the modularity metric can be naturally mapped into the Hamiltonian of the quantum annealer. On the other hand, when constraints are imposed for partitioning into equal parts and minimizing the number of cut edges between parts, a quadratic unconstrained binary optimization (QUBO) reformulation is required. This reformulation may employ the graph complement to fit the problem in the Chimera graph of the quantum annealer. Partitioning into 2 parts and k parts concurrently for arbitrary k are demonstrated with benchmark graphs, random graphs, and small material system density matrix based graphs. Results for graph partitioning using quantum and hybrid classical-quantum approaches are shown to be comparable to current "state of the art" methods and sometimes better.
2018-03-26
Das, Debasis, Kumar, Amritesh.  2017.  Algorithm for Multicast Opportunistic Routing in Wireless Mesh Networks. Proceedings of the 6th International Conference on Software and Computer Applications. :250–255.

Multi-hop Wireless Mesh Networks (WMNs) is a promising new technique for communication with routing protocol designs being critical to the effective and efficient of these WMNs. A common approach for routing traffic in these networks is to select a minimal distance from source to destination as in wire-line networks. Opportunistic Routing(OR) makes use of the broadcasting ability of wireless network and is especially very helpful for WMN because all nodes are static. Our proposed scheme of Multicast Opportunistic Routing(MOR) in WMNs is based on the broadcast transmissions and Learning Au-tomata (LA) to expand the potential candidate nodes that can aid in the process of retransmission of the data. The receivers are required to be in sync with one another in order to avoid duplicated broadcasting of data which is generally achieved by formulating the forwarding candidates according to some LA based metric. The most adorable aspect of this protocol is that it intelligently "learns" from the past experience and improves its performance. The results obtained via this approach of MOR, shows that the proposed scheme outperforms with some existing sachems and is an improved and more effective version of opportunistic routing in mesh network.

2018-03-05
Das, A., Shen, M. Y., Wang, J..  2017.  Modeling User Communities for Identifying Security Risks in an Organization. 2017 IEEE International Conference on Big Data (Big Data). :4481–4486.

In this paper, we address the problem of peer grouping employees in an organization for identifying security risks. Our motivation for studying peer grouping is its importance for a clear understanding of user and entity behavior analytics (UEBA) that is the primary tool for identifying insider threat through detecting anomalies in network traffic. We show that using Louvain method of community detection it is possible to automate peer group creation with feature-based weight assignments. Depending on the number of employees and their features we show that it is also possible to give each group a meaningful description. We present three new algorithms: one that allows an addition of new employees to already generated peer groups, another that allows for incorporating user feedback, and lastly one that provides the user with recommended nodes to be reassigned. We use Niara's data to validate our claims. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.

2017-11-27
Chopade, P., Zhan, J., Bikdash, M..  2016.  Micro-Community detection and vulnerability identification for large critical networks. 2016 IEEE Symposium on Technologies for Homeland Security (HST). :1–7.

In this work we put forward our novel approach using graph partitioning and Micro-Community detection techniques. We firstly use algebraic connectivity or Fiedler Eigenvector and spectral partitioning for community detection. We then used modularity maximization and micro level clustering for detecting micro-communities with concept of community energy. We run micro-community clustering algorithm recursively with modularity maximization which helps us identify dense, deeper and hidden community structures. We experimented our MicroCommunity Clustering (MCC) algorithm for various types of complex technological and social community networks such as directed weighted, directed unweighted, undirected weighted, undirected unweighted. A novel fact about this algorithm is that it is scalable in nature.

2017-05-22
Nguyen, Hiep H., Imine, Abdessamad, Rusinowitch, Michaël.  2016.  Detecting Communities Under Differential Privacy. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :83–93.

Complex networks usually expose community structure with groups of nodes sharing many links with the other nodes in the same group and relatively few with the nodes of the rest. This feature captures valuable information about the organization and even the evolution of the network. Over the last decade, a great number of algorithms for community detection have been proposed to deal with the increasingly complex networks. However, the problem of doing this in a private manner is rarely considered. In this paper, we solve this problem under differential privacy, a prominent privacy concept for releasing private data. We analyze the major challenges behind the problem and propose several schemes to tackle them from two perspectives: input perturbation and algorithm perturbation. We choose Louvain method as the back-end community detection for input perturbation schemes and propose the method LouvainDP which runs Louvain algorithm on a noisy super-graph. For algorithm perturbation, we design ModDivisive using exponential mechanism with the modularity as the score. We have thoroughly evaluated our techniques on real graphs of different sizes and verified that ModDivisive steadily gives the best modularity and avg.F1Score on large graphs while LouvainDP outperforms the remaining input perturbation competitors in certain settings.

2017-05-18
Bhandari, Akshita, Gupta, Ashutosh, Das, Debasis.  2017.  Betweenness Centrality Updation and Community Detection in Streaming Graphs Using Incremental Algorithm. Proceedings of the 6th International Conference on Software and Computer Applications. :159–164.

Centrality measures have perpetually been helpful to find the foremost central or most powerful node within the network. There are numerous strategies to compute centrality of a node however in social networks betweenness centrality is the most widely used approach to bifurcate communities within the network, to find out the susceptibility within the complex networks and to generate the scale free networks whose degree distribution follows the power law. In this paper, we've computed betweenness centrality by identifying communities lying within the network. Our algorithm efficiently updates the centrality of the nodes whenever any edge or vertex addition or deletion takes place within the dynamic network by modifying solely a subset of vertices. For the vertex addition, Incremental Algorithm has been used in which Streaming graphs has also been considered. Brandes approach is the most widely used approach for finding out the betweenness centrality however it's still expensive for growing networks since it takes O(mn+n2logn) amount of time and O(n+m) space however our approach efficiently updates the centrality of the nodes by taking O(textbarStextbarn+textbarStextbarnlogn) amount of time where textbarStextbar is the subset of the vertices,m is the number of edges, n is the number of vertices and textbarStextbar≤n holds true.

2017-05-17
Burdick, Doug, De, Soham, Raschid, Louiqa, Shao, Mingchao, Xu, Zheng, Zotkina, Elena.  2016.  resMBS: Constructing a Financial Supply Chain from Prospectus. Proceedings of the Second International Workshop on Data Science for Macro-Modeling. :7:1–7:6.

Understanding the behavior of complex financial supply chains is usually difficult due to a lack of data capturing the interactions between financial institutions (FIs) and the roles that they play in financial contracts (FCs). resMBS is an example supply chain corresponding to the US residential mortgage backed securities that were critical in the 2008 US financial crisis. In this paper, we describe the process of creating the resMBS graph dataset from financial prospectus. We use the SystemT rule-based text extraction platform to develop two tools, ORG NER and Dict NER, for named entity recognition of financial institution (FI) names. The resMBS graph comprises a set of FC nodes (each prospectus) and the corresponding FI nodes that are extracted from the prospectus. A Role-FI extractor matches a role keyword such as originator, sponsor or servicer, with FI names. We study the performance of the Role-FI extractor, and ORG NER and Dict NER, in constructing the resMBS dataset. We also present preliminary results of a clustering based analysis to identify financial communities and their evolution in the resMBS financial supply chain.

2017-03-20
Karbab, ElMouatez Billah, Debbabi, Mourad, Derhab, Abdelouahid, Mouheb, Djedjiga.  2016.  Cypider: Building Community-based Cyber-defense Infrastructure for Android Malware Detection. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :348–362.

The popularity of Android OS has dramatically increased malware apps targeting this mobile OS. The daily amount of malware has overwhelmed the detection process. This fact has motivated the need for developing malware detection and family attribution solutions with the least manual intervention. In response, we propose Cypider framework, a set of techniques and tools aiming to perform a systematic detection of mobile malware by building an efficient and scalable similarity network infrastructure of malicious apps. Our detection method is based on a novel concept, namely malicious community, in which we consider, for a given family, the instances that share common features. Under this concept, we assume that multiple similar Android apps with different authors are most likely to be malicious. Cypider leverages this assumption for the detection of variants of known malware families and zero-day malware. It is important to mention that Cypider does not rely on signature-based or learning-based patterns. Alternatively, it applies community detection algorithms on the similarity network, which extracts sub-graphs considered as suspicious and most likely malicious communities. Furthermore, we propose a novel fingerprinting technique, namely community fingerprint, based on a learning model for each malicious community. Cypider shows excellent results by detecting about 50% of the malware dataset in one detection iteration. Besides, the preliminary results of the community fingerprint are promising as we achieved 87% of the detection.

2017-02-27
Li-xiong, Z., Xiao-lin, X., Jia, L., Lu, Z., Xuan-chen, P., Zhi-yuan, M., Li-hong, Z..  2015.  Malicious URL prediction based on community detection. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–7.

Traditional Anti-virus technology is primarily based on static analysis and dynamic monitoring. However, both technologies are heavily depended on application files, which increase the risk of being attacked, wasting of time and network bandwidth. In this study, we propose a new graph-based method, through which we can preliminary detect malicious URL without application file. First, the relationship between URLs can be found through the relationship between people and URLs. Then the association rules can be mined with confidence of each frequent URLs. Secondly, the networks of URLs was built through the association rules. When the networks of URLs were finished, we clustered the date with modularity to detect communities and every community represents different types of URLs. We suppose that a URL has association with one community, then the URL is malicious probably. In our experiments, we successfully captured 82 % of malicious samples, getting a higher capture than using traditional methods.

2015-05-06
Carter, K.M., Idika, N., Streilein, W.W..  2014.  Probabilistic Threat Propagation for Network Security. Information Forensics and Security, IEEE Transactions on. 9:1394-1405.

Techniques for network security analysis have historically focused on the actions of the network hosts. Outside of forensic analysis, little has been done to detect or predict malicious or infected nodes strictly based on their association with other known malicious nodes. This methodology is highly prevalent in the graph analytics world, however, and is referred to as community detection. In this paper, we present a method for detecting malicious and infected nodes on both monitored networks and the external Internet. We leverage prior community detection and graphical modeling work by propagating threat probabilities across network nodes, given an initial set of known malicious nodes. We enhance prior work by employing constraints that remove the adverse effect of cyclic propagation that is a byproduct of current methods. We demonstrate the effectiveness of probabilistic threat propagation on the tasks of detecting botnets and malicious web destinations.