Biblio
Web Application becomes the leading solution for the utilization of systems that need access globally, distributed, cost-effective, as well as the diversity of the content that can run on this technology. At the same time web application security have always been a major issue that must be considered due to the fact that 60% of Internet attacks targeting web application platform. One of the biggest impacts on this technology is Cross Site Scripting (XSS) attack, the most frequently occurred and are always in the TOP 10 list of Open Web Application Security Project (OWASP). Vulnerabilities in this attack occur in the absence of checking, testing, and the attention about secure coding practices. There are several alternatives to prevent the attacks that associated with this threat. Network Intrusion Detection System can be used as one solution to prevent the influence of XSS Attack. This paper investigates the XSS attack recognition and detection using regular expression pattern matching and a preprocessing method. Experiments are conducted on a testbed with the aim to reveal the behaviour of the attack.
Taint analysis has been used in numerous scripting languages such as Perl and Ruby to defend against various form of code injection attacks, such as cross-site scripting (XSS) and SQL-injection. However, most taint analysis systems simply fail when tainted information is used in a possibly unsafe manner. In this paper, we explore how precise taint tracking can be used in order to secure web content. Rather than simply crashing, we propose that a library-writer defined sanitization function can instead be used on the tainted portions of a string. With this approach, library writers or framework developers can design their tools to be resilient, even if inexperienced developers misuse these libraries in unsafe ways. In other words, developer mistakes do not have to result in system crashes to guarantee security. We implement both coarse-grained and precise taint tracking in JavaScript, and show how our precise taint tracking API can be used to defend against SQL injection and XSS attacks. We further evaluate the performance of this approach, showing that precise taint tracking involves an overhead of approximately 22%.
Modern websites use multiple authentication cookies to allow visitors to the site different levels of access. The complexity of modern web applications can make it difficult for a web application programmer to ensure that the use of authentication cookies does not introduce vulnerabilities. Even when a programmer has access to all of the source code, this analysis can be challenging; the problem becomes even more vexing when web programmers cobble together off-the-shelf libraries to implement authentication. We have assembled a checklist for modern web programmers to verify that the cookie based authentication mechanism is securely implemented. Then, we developed a tool, Newton, to help a web application programmer to identify authentication cookies for specific parts of the website and to verify that they are securely implemented according to the checklist. We used Newton to analyze 149 sites, including the Alexa top-200 and many other popular sites across a range of categories including search, shopping, and finance. We found that 113 of them–-including high-profile sites such as Yahoo, Amazon, and Fidelity–-were vulnerable to hijacking attacks. Many websites have already acknowledged and fixed the vulnerabilities that we found using Newton and reported to them.
WebRTC is one of the latest additions to the ever growing repository of Web browser technologies, which push the envelope of native Web application capabilities. WebRTC allows real-time peer-to-peer audio and video chat, that runs purely in the browser. Unlike existing video chat solutions, such as Skype, that operate in a closed identity ecosystem, WebRTC was designed to be highly flexible, especially in the domains of signaling and identity federation. This flexibility, however, opens avenues for identity fraud. In this paper, we explore the technical underpinnings of WebRTC's identity management architecture. Based on this analysis, we identify three novel attacks against endpoint authenticity. To answer the identified threats, we propose and discuss defensive strategies, including security improvements for the WebRTC specifications and mitigation techniques for the identity and service providers.
Web application security has become crucially vital these days. Earlier "default allow" model was used to secure web applications but it was unable to secure web applications against plethora of attacks [1]. In contrast, more restricted security to the web applications is provided by default deny model which at first, builds a model for the particular application and then permits merely those requests that conform to that model while ignoring everything else. Besides this, a novel and effective methodology is followed that allows to analyze the validity of application requests and further results in the generation of semi structured XML cases for the web applications. Furthermore, mature and resilient XML cases are generated by employing learning techniques. This system will further be gauged by examining that XML file containing cases are in correct accordance with the XML format or not. Moreover, the distinction between malicious and non-malicious traffic is carried out carefully. Results have proved its efficacy of rule generation employing access traffic log of cross site scripting (XSS), SQL injection, HTTP Request Splitting, HTTP response splitting and Buffer overflow attacks.
In this ubiquitous IoT (Internet of Things) era, web services have become a vital part of today's critical national and public sector infrastructure. With the industry wide adaptation of service-oriented architecture (SOA), web services have become an integral component of enterprise software eco-system, resulting in new security challenges. Web services are strategic components used by wide variety of organizations for information exchange on the internet scale. The public deployments of mission critical APIs opens up possibility of software bugs to be maliciously exploited. Therefore, vulnerability identification in web services through static as well as dynamic analysis is a thriving and interesting area of research in academia, national security and industry. Using OWASP (Open Web Application Security Project) web services guidelines, this paper discusses the challenges of existing standards, and reviews new techniques and tools to improve services security by detecting vulnerabilities. Recent vulnerabilities like Shellshock and Heartbleed has shifted the focus of risk assessment to the application layer, which for majority of organization means public facing web services and web/mobile applications. RESTFul services have now become the new service development paradigm normal; therefore SOAP centric standards such as XML Encryption, XML Signature, WS-Security, and WS-SecureConversation are nearly not as relevant. In this paper we provide an overview of the OWASP top 10 vulnerabilities for web services, and discuss the potential static code analysis techniques to discover these vulnerabilities. The paper reviews the security issues targeting web services, software/program verification and security development lifecycle.
Nowadays, with the rapid development of Internet, the use of Web is increasing and the Web applications have become a substantial part of people's daily life (e.g. E-Government, E-Health and E-Learning), as they permit to seamlessly access and manage information. The main security concern for e-business is Web application security. Web applications have many vulnerabilities such as Injection, Broken Authentication and Session Management, and Cross-site scripting (XSS). Subsequently, web applications have become targets of hackers, and a lot of cyber attack began to emerge in order to block the services of these Web applications (Denial of Service Attach). Developers are not aware of these vulnerabilities and have no enough time to secure their applications. Therefore, there is a significant need to study and improve attack detection for web applications through determining the most significant factors for detection. To the best of our knowledge, there is not any research that summarizes the influent factors of detection web attacks. In this paper, the author studies state-of-the-art techniques and research related to web attack detection: the author analyses and compares different methods of web attack detections and summarizes the most important factors for Web attack detection independent of the type of vulnerabilities. At the end, the author gives recommendation to build a framework for web application protection.
With the growth of the Internet, web applications are becoming very popular in the user communities. However, the presence of security vulnerabilities in the source code of these applications is raising cyber crime rate rapidly. It is required to detect and mitigate these vulnerabilities before their exploitation in the execution environment. Recently, Open Web Application Security Project (OWASP) and Common Vulnerabilities and Exposures (CWE) reported Cross-Site Scripting (XSS) as one of the most serious vulnerabilities in the web applications. Though many vulnerability detection approaches have been proposed in the past, existing detection approaches have the limitations in terms of false positive and false negative results. This paper proposes a context-sensitive approach based on static taint analysis and pattern matching techniques to detect and mitigate the XSS vulnerabilities in the source code of web applications. The proposed approach has been implemented in a prototype tool and evaluated on a public data set of 9408 samples. Experimental results show that proposed approach based tool outperforms over existing popular open source tools in the detection of XSS vulnerabilities.
With the wide popularity of Cloud Computing, Service-oriented Computing is becoming the de-facto approach for the development of distributed systems. This has introduced the issue of trustworthiness with respect to the services being provided. Service Requesters are provided with a wide range of services that they can select from. Usually the service requester compare between these services according to their cost and quality. One essential part of the quality of a service is the trustworthiness properties of such services. Traditional service models focuses on service functionalities and cost when defining services. This paper introduces a new service model that extends traditional service models to support trustworthiness properties.
Injection vulnerabilities have topped rankings of the most critical web application vulnerabilities for several years [1, 2]. They can occur anywhere where user input may be erroneously executed as code. The injected input is typically aimed at gaining unauthorized access to the system or to private information within it, corrupting the system's data, or disturbing system availability. Injection vulnerabilities are tedious and difficult to prevent.
This paper is a proposal for a poster. In it we describe a medical device security approach that researchers at Fraunhofer used to analyze different kinds of medical devices for security vulnerabilities. These medical devices were provided to Fraunhofer by a medical device manufacturer whose name we cannot disclose due to non-disclosure agreements.