Visible to the public Biblio

Filters: Keyword is ISP  [Clear All Filters]
2021-04-29
Fejrskov, M., Pedersen, J. M., Vasilomanolakis, E..  2020.  Cyber-security research by ISPs: A NetFlow and DNS Anonymization Policy. :1—8.

Internet Service Providers (ISPs) have an economic and operational interest in detecting malicious network activity relating to their subscribers. However, it is unclear what kind of traffic data an ISP has available for cyber-security research, and under which legal conditions it can be used. This paper gives an overview of the challenges posed by legislation and of the data sources available to a European ISP. DNS and NetFlow logs are identified as relevant data sources and the state of the art in anonymization and fingerprinting techniques is discussed. Based on legislation, data availability and privacy considerations, a practically applicable anonymization policy is presented.

2020-11-20
Bhaharin, S. H., Mokhtar, U. A., Sulaiman, R., Yusof, M. M..  2019.  Issues and Trends in Information Security Policy Compliance. 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS). :1—6.
In the era of Industry 4.0 (IR 4.0), information leakage has become a critical issue for information security. The basic approach to addressing information leakage threats is to implement an information security policy (ISP) that defines the standards, boundaries, and responsibilities of users of information and technology of an organization. ISPs are one of the most commonly used methods for controlling internal user security behaviours, which include, but not limited to, computer usage ethics; organizational system usage policies; Internet and email usage policies; and the use of social media. Human error is the main security threat to information security, resulting from negligence, ignorance, and failure to adhere to organizational information security policies. Information security incidents are a problem related to human behaviour because technology is designed and operated by humans, presenting the opportunities and spaces for human error. In addition to the factor of human error as the main source of information leakage, this study aims to systematically analyse the fundamental issues of information security policy compliance. An analysis of these papers identifies and categories critical factor that effect an employee's attitude toward compliance with ISP. The human, process, technology element and information governance should be thought as a significant scope for more efficiency of information security policy compliance and in any further extensive studies to improve on information security policy compliance. Therefore, to ensure these are properly understood, further study is needed to identity the information governance that needs to be included in organizations and current best practices for developing an information security policy compliance within organizations.
2020-05-15
Aydeger, Abdullah, Saputro, Nico, Akkaya, Kemal.  2018.  Utilizing NFV for Effective Moving Target Defense Against Link Flooding Reconnaissance Attacks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :946—951.

Moving target defense (MTD) is becoming popular with the advancements in Software Defined Networking (SDN) technologies. With centralized management through SDN, changing the network attributes such as routes to escape from attacks is simple and fast. Yet, the available alternate routes are bounded by the network topology, and a persistent attacker that continuously perform the reconnaissance can extract the whole link-map of the network. To address this issue, we propose to use virtual shadow networks (VSNs) by applying Network Function Virtualization (NFV) abilities to the network in order to deceive attacker with the fake topology information and not reveal the actual network topology and characteristics. We design this approach under a formal framework for Internet Service Provider (ISP) networks and apply it to the recently emerged indirect DDoS attacks, namely Crossfire, for evaluation. The results show that attacker spends more time to figure out the network behavior while the costs on the defender and network operations are negligible until reaching a certain network size.

2020-01-21
Izem, Acia, Wakrim, Mohamed, Ghadi, Abderrahim.  2019.  Logical Topology of Networks Implementing IPv6 Addressing. Proceedings of the 4th International Conference on Smart City Applications. :1–10.
The massive growth of the global routing tables is one of the biggest problems that still face internet nowadays. This problem is mainly caused by the random distribution of IPv4 addresses. With the immigration to IPv6 and the large ranges of addresses provided by this protocol, it is crucial to wisely manage the assignment of IPv6 prefixes. In this paper, we propose a process to generate a logical topology of IPv6 networks. This topology uses perfectly the summarization technique and consists in representing the summary routes in hierarchical manner such that large range of addresses represents several smaller ranges. The proposed aggregation process optimizes and divides up the routing tables which may help resolve the problem of the explosive growth of internet routing tables. Furthermore, the logical topology can be easly customized to fit the features of the routers that are used in the network.
Iriqat, Yousef Mohammad, Ahlan, Abd Rahman, Molok, Nurul Nuha Abdul.  2019.  Information Security Policy Perceived Compliance Among Staff in Palestine Universities: An Empirical Pilot Study. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :580–585.

In today's interconnected world, universities recognize the importance of protecting their information assets from internal and external threats. Being the possible insider threats to Information Security, employees are often coined as the weakest link. Both employees and organizations should be aware of this raising challenge. Understanding staff perception of compliance behaviour is critical for universities wanting to leverage their staff capabilities to mitigate Information Security risks. Therefore, this research seeks to get insights into staff perception based on factors adopted from several theories by using proposed constructs i.e. "perceived" practices/policies and "perceived" intention to comply. Drawing from the General Deterrence Theory, Protection Motivation Theory, Theory of Planned Behaviour and Information Reinforcement, within the context of Palestine universities, this paper integrates staff awareness of Information Security Policies (ISP) countermeasures as antecedents to ``perceived'' influencing factors (perceived sanctions, perceived rewards, perceived coping appraisal, and perceived information reinforcement). The empirical study is designed to follow a quantitative research approaches, use survey as a data collection method and questionnaires as the research instruments. Partial least squares structural equation modelling is used to inspect the reliability and validity of the measurement model and hypotheses testing for the structural model. The research covers ISP awareness among staff and seeks to assert that information security is the responsibility of all academic and administrative staff from all departments. Overall, our pilot study findings seem promising, and we found strong support for our theoretical model.

2018-05-30
Chen, Yi, You, Wei, Lee, Yeonjoon, Chen, Kai, Wang, XiaoFeng, Zou, Wei.  2017.  Mass Discovery of Android Traffic Imprints Through Instantiated Partial Execution. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :815–828.
Monitoring network behaviors of mobile applications, controlling their resource access and detecting potentially harmful apps are becoming increasingly important for the security protection within today's organizational, ISP and carriers. For this purpose, apps need to be identified from their communication, based upon their individual traffic signatures (called imprints in our research). Creating imprints for a large number of apps is nontrivial, due to the challenges in comprehensively analyzing their network activities at a large scale, for millions of apps on today's rapidly-growing app marketplaces. Prior research relies on automatic exploration of an app's user interfaces (UIs) to trigger its network activities, which is less likely to scale given the cost of the operation (at least 5 minutes per app) and its effectiveness (limited coverage of an app's behaviors). In this paper, we present Tiger (Traffic Imprint Generator), a novel technique that makes comprehensive app imprint generation possible in a massive scale. At the center of Tiger is a unique instantiated slicing technique, which aggressively prunes the program slice extracted from the app's network-related code by evaluating each variable's impact on possible network invariants, and removing those unlikely to contribute through assigning them concrete values. In this way, Tiger avoids exploring a large number of program paths unrelated to the app's identifiable traffic, thereby reducing the cost of the code analysis by more than one order of magnitude, in comparison with the conventional slicing and execution approach. Our experiments show that Tiger is capable of recovering an app's full network activities within 18 seconds, achieving over 98% coverage of its identifiable packets and 0.742% false detection rate on app identification. Further running the technique on over 200,000 real-world Android apps (including 78.23% potentially harmful apps) leads to the discovery of surprising new types of traffic invariants, including fake device information, hardcoded time values, session IDs and credentials, as well as complicated trigger conditions for an app's network activities, such as human involvement, Intent trigger and server-side instructions. Our findings demonstrate that many network activities cannot easily be invoked through automatic UI exploration and code-analysis based approaches present a promising alternative.
2018-04-11
Zeng, H., Wang, B., Deng, W., Gao, X..  2017.  CENTRA: CENtrally Trusted Routing vAlidation for IGP. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :21–24.

Trusted routing is a hot spot in network security. Lots of efforts have been made on trusted routing validation for Interior Gateway Protocols (IGP), e.g., using Public Key Infrastructure (PKI) to enhance the security of protocols, or routing monitoring systems. However, the former is limited by further deployment in the practical Internet, the latter depends on a complete, accurate, and fresh knowledge base-this is still a big challenge (Internet Service Providers (ISPs) are not willing to leak their routing policies). In this paper, inspired by the idea of centrally controlling in Software Defined Network (SDN), we propose a CENtrally Trusted Routing vAlidation framework, named CENTRA, which can automated collect routing information, centrally detect anomaly and deliver secure routing policy. We implement the proposed framework using NETCONF as the communication protocol and YANG as the data model. The experimental results reveal that CENTRA can detect and block anomalous routing in real time. Comparing to existing secure routing mechanism, CENTRA improves the detection efficiency and real-time significantly.

2017-02-21
J. Pan, R. Jain, S. Paul.  2015.  "Enhanced Evaluation of the Interdomain Routing System for Balanced Routing Scalability and New Internet Architecture Deployments". IEEE Systems Journal. 9:892-903.

Internet is facing many challenges that cannot be solved easily through ad hoc patches. To address these challenges, many research programs and projects have been initiated and many solutions are being proposed. However, before we have a new architecture that can motivate Internet service providers (ISPs) to deploy and evolve, we need to address two issues: 1) know the current status better by appropriately evaluating the existing Internet; and 2) find how various incentives and strategies will affect the deployment of the new architecture. For the first issue, we define a series of quantitative metrics that can potentially unify results from several measurement projects using different approaches and can be an intrinsic part of future Internet architecture (FIA) for monitoring and evaluation. Using these metrics, we systematically evaluate the current interdomain routing system and reveal many “autonomous-system-level” observations and key lessons for new Internet architectures. Particularly, the evaluation results reveal the imbalance underlying the interdomain routing system and how the deployment of FIAs can benefit from these findings. With these findings, for the second issue, appropriate deployment strategies of the future architecture changes can be formed with balanced incentives for both customers and ISPs. The results can be used to shape the short- and long-term goals for new architectures that are simple evolutions of the current Internet (so-called dirty-slate architectures) and to some extent to clean-slate architectures.

2015-05-06
Zhenlong Yuan, Cuilan Du, Xiaoxian Chen, Dawei Wang, Yibo Xue.  2014.  SkyTracer: Towards fine-grained identification for Skype traffic via sequence signatures. Computing, Networking and Communications (ICNC), 2014 International Conference on. :1-5.

Skype has been a typical choice for providing VoIP service nowadays and is well-known for its broad range of features, including voice-calls, instant messaging, file transfer and video conferencing, etc. Considering its wide application, from the viewpoint of ISPs, it is essential to identify Skype flows and thus optimize network performance and forecast future needs. However, in general, a host is likely to run multiple network applications simultaneously, which makes it much harder to classify each and every Skype flow from mixed traffic exactly. Especially, current techniques usually focus on host-level identification and do not have the ability to identify Skype traffic at the flow-level. In this paper, we first reveal the unique sequence signatures of Skype UDP flows and then implement a practical online system named SkyTracer for precise Skype traffic identification. To the best of our knowledge, this is the first time to utilize the strong sequence signatures to carry out early identification of Skype traffic. The experimental results show that SkyTracer can achieve very high accuracy at fine-grained level in identifying Skype traffic.