Visible to the public Biblio

Filters: Keyword is quantum computing  [Clear All Filters]
2022-07-01
Wang, Ruyi, Wang, Yong, Xie, Hao.  2021.  New McEliece Cryptosystem Based on Polar-LDPC Concatenated Codes as a Post-quantum Cryptography. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :111—116.
With the increase of computing power of quantum computers, classical cryptography schemes such as RSA and ECC are no longer secure in the era of quantum computers. The Cryptosystem based on coding has the advantage of resisting quantum computing and has a good application prospect in the future. McEliece Public Key Cryptography is a cryptosystem based on coding theory, whose security can be reduced to the decoding problem of general linear codes and can resist quantum attacks. Therefore, this paper proposes a cryptosystem based on the Polar-LDPC Concatenated Codes, which is an improvement on the original McEliece cipher scheme. The main idea is to take the generation matrix of Polar code and LDPC code as the private key, and the product of their hidden generation matrix as the public key. The plain text is encoded by Polar code and LDPC code in turn to obtain the encrypted ciphertext. The decryption process is the corresponding decoding process. Then, the experimental data presented in this paper prove that the proposed scheme can reduce key size and improve security compared with the original McEliece cryptosystem under the condition of selecting appropriate parameters. Moreover, compared with the improvement schemes based on McEliece proposed in recent years, the proposed scheme also has great security advantages.
2022-06-09
Joshua, Wen Xin Khoo, Justin, Xin Wei Teoh, Yap, Chern Nam.  2021.  Arithmetic Circuit Homomorphic Encryption Key Pairing Comparisons and Analysis between Elliptic Curve Diffie Hellman and Supersingular Isogeny Diffie Hellman. 2021 2nd Asia Conference on Computers and Communications (ACCC). :138–142.
This project is an extension of ongoing research on Fully Homomorphic Encryption - Arithmetic Circuit Homomorphic Encryption. This paper focus on the implementation of pairing algorithm Supersingular Isogeny Diffie Hellman Key Exchange into Arithmetic Circuit Homomorphic Encryption as well as comparison and analyse with Elliptic Curve Diffie Hellman. Next, the paper will discuss on the latencies incurred due to pairing sessions between machines, key generations, key sizes, CPU usage and overall latency for the two respective key exchange methods to be compared against each other.
2022-05-20
Kjamilji, Artrim, Levi, Albert, Savas, Erkay, Güney, Osman Berke.  2021.  Secure Matrix Operations for Machine Learning Classifications Over Encrypted Data in Post Quantum Industrial IoT. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
We tackle the problem where a server owns a trained Machine Learning (ML) model and a client/user has an unclassified query that he wishes to classify in secure and private fashion using the server’s model. During the process the server learns nothing, while the user learns only his final classification and nothing else. Since several ML classification algorithms, such as deep neural networks, support vector machines-SVM (and hyperplane decisions in general), Logistic Regression, Naïve Bayes, etc., can be expressed in terms of matrix operations, initially we propose novel secure matrix operations as our building blocks. On top of them we build our secure and private ML classification algorithms under strict security and privacy requirements. As our underlying cryptographic primitives are shown to be resilient to quantum computer attacks, our algorithms are also suitable for the post-quantum world. Our theoretical analysis and extensive experimental evaluations show that our secure matrix operations, hence our secure ML algorithms build on top of them as well, outperform the state of the art schemes in terms of computation and communication costs. This makes our algorithms suitable for devices with limited resources that are often found in Industrial IoT (Internet of Things)
Chen, Zhaohui, Karabulut, Emre, Aysu, Aydin, Ma, Yuan, Jing, Jiwu.  2021.  An Efficient Non-Profiled Side-Channel Attack on the CRYSTALS-Dilithium Post-Quantum Signature. 2021 IEEE 39th International Conference on Computer Design (ICCD). :583–590.
Post-quantum digital signature is a critical primitive of computer security in the era of quantum hegemony. As a finalist of the post-quantum cryptography standardization process, the theoretical security of the CRYSTALS-Dilithium (Dilithium) signature scheme has been quantified to withstand classical and quantum cryptanalysis. However, there is an inherent power side-channel information leakage in its implementation instance due to the physical characteristics of hardware.This work proposes an efficient non-profiled Correlation Power Analysis (CPA) strategy on Dilithium to recover the secret key by targeting the underlying polynomial multiplication arithmetic. We first develop a conservative scheme with a reduced key guess space, which can extract a secret key coefficient with a 99.99% confidence using 157 power traces of the reference Dilithium implementation. However, this scheme suffers from the computational overhead caused by the large modulus in Dilithium signature. To further accelerate the CPA run-time, we propose a fast two-stage scheme that selects a smaller search space and then resolves false positives. We finally construct a hybrid scheme that combines the advantages of both schemes. Real-world experiment on the power measurement data shows that our hybrid scheme improves the attack’s execution time by 7.77×.
Yao, Bing, Wang, Hongyu, Su, Jing, Zhang, Wanjia.  2021.  Graph-Based Lattices Cryptosystem As New Technique Of Post-Quantum Cryptography. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:9–13.
A new method for judging degree sequence is shown by means of perfect ice-flower systems made by operators - stars (particular complete bipartite graphs), and moreover this method can be used to build up degree sequences and perfect ice-flower systems. Graphic lattice, graph-graphic lattice, caterpillar-graphic lattice and topological coding lattice are defined. We establish some connections between traditional lattices and graphic lattices trying to provide new techniques for Lattice-based cryptosystem and post-quantum cryptography, and trying to enrich the theoretical knowledge of topological coding.
Ravi, Prasanna, Chattopadhyay, Anupam, Bhasin, Shivam.  2021.  Practical Side-Channel and Fault Attacks on Lattice-Based Cryptography. 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC). :1–2.
The impending threat of large-scale quantum computers to classical RSA and ECC-based public-key cryptographic schemes prompted NIST to initiate a global level standardization process for post-quantum cryptography. This process which started in 2017 with 69 submissions is currently in its third and final round with seven main candidates and eight alternate candidates, out of which seven (7) out of the fifteen (15) candidates are schemes based on hard problems over structured lattices, known as lattice-based cryptographic schemes. Among the various parameters such as theoretical post-quantum (PQ) security guarantees, implementation cost and performance, resistance against physical attacks such as Side-Channel Analysis (SCA) and Fault Injection Analysis (FIA) has also emerged as an important criterion for standardization in the final round [1]. This is especially relevant for adoption of PQC in embedded devices, which are most likely used in environments where an attacker can have unimpeded physical access to the device.
2022-05-10
Lu, Shouqin, Li, Xiangxue.  2021.  Lightweight Grouping-Proof for Post-Quantum RFID Security. 2021 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). :49–58.
A grouping-proof protocol aims to generate an evidence that two or more RFID (Radio Frequency Identification) tags in a group are coexistent, which has been widely deployed in practical scenarios, such as healthcare, supply-chain management, and so on. However, existing grouping-proof protocols have many issues in security and efficiency, either incompatible with EPCglobal Class-1 Generation-2 (C1G2) standard, or vulnerable to different attacks. In this paper, we propose a lightweight grouping-proof protocol which only utilizes bitwise operations (AND, XOR) and 128-bit pseudorandom number generator (PRNG). 2-round interactions between the reader and the tags allow them to cooperate on fast authentication in parallel mode where the reader broadcasts its round messages rather than hang on for the prior tag and then fabricate apposite output for the next tag consecutively. Our design enables the reader to aggregate the first round proofs (to bind the membership of tags in the same group) generated by the tags to an authenticator of constant size (independent of the number of tags) that can then be used by the tags to generate the second round proofs (and that will be validated by the verifier). Formal security (i.e., PPT adversary cannot counterfeit valid grouping-proof that can be accepted by any verifier) of the proposed protocol relies on the hardness of the learning parity with noise (LPN) problem, which can resist against quantum computing attacks. Other appealing features (e.g., robustness, anonymity, etc.) are also inspected. Performance evaluation shows its applicability to C1G2 RFID.
2022-05-06
Saravanan, M, Pratap Sircar, Rana.  2021.  Quantum Evolutionary Algorithm for Scheduling Resources in Virtualized 5G RAN Environment. 2021 IEEE 4th 5G World Forum (5GWF). :111–116.
Radio is the most important part of any wireless network. Radio Access Network (RAN) has been virtualized and disaggregated into different functions whose location is best defined by the requirements and economics of the use case. This Virtualized RAN (vRAN) architecture separates network functions from the underlying hardware and so 5G can leverage virtualization of the RAN to implement these functions. The easy expandability and manageability of the vRAN support the expansion of the network capacity and deployment of new features and algorithms for streamlining resource usage. In this paper, we try to address the problem of scheduling 5G vRAN with mid-haul network capacity constraints as a combinatorial optimization problem. We transformed it to a Quadratic Unconstrained Binary Optimization (QUBO) problem by using a newly proposed quantum-based algorithm and compared our implementation with existing classical algorithms. This work has demonstrated the advantage of quantum computers in solving a particular optimization problem in the Telecommunication domain and paves the way for solving critical real-world problems using quantum computers faster and better.
Goswami, Partha Sarathi, Chakraborty, Tamal, Chattopadhyay, Abir.  2021.  A Secured Quantum Key Exchange Algorithm using Fermat Numbers and DNA Encoding. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—8.
To address the concerns posed by certain security attacks on communication protocol, this paper proposes a Quantum Key Exchange algorithm coupled with an encoding scheme based on Fermat Numbers and DNA sequences. The concept of Watson-Crick’s transformation of DNA sequences and random property of the Fermat Numbers is applied for protection of the communication system by means of dual encryption. The key generation procedure is governed by a quantum bit rotation mechanism. The total process is illustrated with an example. Also, security analysis of the encryption and decryption process is also discussed.
2022-04-26
Wang, Luyao, Huang, Chunguang, Cheng, Hai.  2021.  Quantum attack-resistant signature scheme from lattice cryptography for WFH. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :868–871.

With the emergence of quantum computers, traditional digital signature schemes based on problems such as large integer solutions and discrete logarithms will no longer be secure, and it is urgent to find effective digital signature schemes that can resist quantum attacks. Lattice cryptography has the advantages of computational simplicity and high security. In this paper, we propose an identity-based digital signature scheme based on the rejection sampling algorithm. Unlike most schemes that use a common Gaussian distribution, this paper uses a bimodal Gaussian distribution, which improves efficiency. The identity-based signature scheme is more convenient for practical application than the traditional certificate-based signature scheme.

2022-04-19
Sahu, Indra Kumar, Nene, Manisha J.  2021.  Identity-Based Integrity Verification (IBIV) Protocol for Cloud Data Storage. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). :1–6.
With meteoric advancement in quantum computing, the traditional data integrity verifying schemes are no longer safe for cloud data storage. A large number of the current techniques are dependent on expensive Public Key Infrastructure (PKI). They cost computationally and communicationally heavy for verification which do not stand with the advantages when quantum computing techniques are applied. Hence, a quantum safe and efficient integrity verification protocol is a research hotspot. Lattice-based signature constructions involve matrix-matrix or matrix vector multiplications making computation competent, simple and resistant to quantum computer attacks. Study in this paper uses Bloom Filter which offers high efficiency in query and search operations. Further, we propose an Identity-Based Integrity Verification (IBIV) protocol for cloud storage from Lattice and Bloom filter. We focus on security against attacks from Cloud Service Provider (CSP), data privacy attacks against Third Party Auditor (TPA) and improvement in efficiency.
2022-04-01
Neumann, Niels M. P., van Heesch, Maran P. P., Phillipson, Frank, Smallegange, Antoine A. P..  2021.  Quantum Computing for Military Applications. 2021 International Conference on Military Communication and Information Systems (ICMCIS). :1–8.
Quantum computers have the potential to outshine classical alternatives in solving specific problems, under the assumption of mature enough hardware. A specific subset of these problems relate to military applications. In this paper we consider the state-of-the-art of quantum technologies and different applications of this technology. Additionally, four use-cases of quantum computing specific for military applications are presented. These use-cases are directly in line with the 2021 AI strategic agenda of the Netherlands Ministry of Defense.
2022-03-14
Gustafson, Erik, Holzman, Burt, Kowalkowski, James, Lamm, Henry, Li, Andy C. Y., Perdue, Gabriel, Isakov, Sergei V., Martin, Orion, Thomson, Ross, Beall, Jackson et al..  2021.  Large scale multi-node simulations of ℤ2 gauge theory quantum circuits using Google Cloud Platform. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS). :72—79.
Simulating quantum field theories on a quantum computer is one of the most exciting fundamental physics applications of quantum information science. Dynamical time evolution of quantum fields is a challenge that is beyond the capabilities of classical computing, but it can teach us important lessons about the fundamental fabric of space and time. Whether we may answer scientific questions of interest using near-term quantum computing hardware is an open question that requires a detailed simulation study of quantum noise. Here we present a large scale simulation study powered by a multi-node implementation of qsim using the Google Cloud Platform. We additionally employ newly-developed GPU capabilities in qsim and show how Tensor Processing Units — Application-specific Integrated Circuits (ASICs) specialized for Machine Learning — may be used to dramatically speed up the simulation of large quantum circuits. We demonstrate the use of high performance cloud computing for simulating ℤ2 quantum field theories on system sizes up to 36 qubits. We find this lattice size is not able to simulate our problem and observable combination with sufficient accuracy, implying more challenging observables of interest for this theory are likely beyond the reach of classical computation using exact circuit simulation.
2022-02-07
Qin, Zhenhui, Tong, Rui, Wu, Xingjun, Bai, Guoqiang, Wu, Liji, Su, Linlin.  2021.  A Compact Full Hardware Implementation of PQC Algorithm NTRU. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :792–797.
With the emergence and development of quantum computers, the traditional public-key cryptography (PKC) is facing the risk of being cracked. In order to resist quantum attacks and ensure long-term communication security, NIST launched a global collection of Post Quantum Cryptography (PQC) standards in 2016, and it is currently in the third round of selection. There are three Lattice-based PKC algorithms that stand out, and NTRU is one of them. In this article, we proposed the first complete and compact full hardware implementation of NTRU algorithm submitted in the third round. By using one structure to complete the design of the three types of complex polynomial multiplications in the algorithm, we achieved better performance while reducing area costs.
2022-01-31
Kwon, Sujin, Kang, Ju-Sung, Yeom, Yongjin.  2021.  Analysis of public-key cryptography using a 3-regular graph with a perfect dominating set. 2021 IEEE Region 10 Symposium (TENSYMP). :1–6.

Research on post-quantum cryptography (PQC) to improve the security against quantum computers has been actively conducted. In 2020, NIST announced the final PQC candidates whose design rationales rely on NP-hard or NP-complete problems. It is believed that cryptography based on NP-hard problem might be secure against attacks using quantum computers. N. Koblitz introduced the concept of public-key cryptography using a 3-regular graph with a perfect dominating set in the 1990s. The proposed cryptosystem is based on NP-complete problem to find a perfect dominating set in the given graph. Later, S. Yoon proposed a variant scheme using a perfect minus dominating function. However, their works have not received much attention since these schemes produce huge ciphertexts and are hard to implement efficiently. Also, the security parameters such as key size and plaintext-ciphertext size have not been proposed yet. We conduct security and performance analysis of their schemes and discuss the practical range of security parameters. As an application, the scheme with one-wayness property can be used as an encoding method in the white-box cryptography (WBC).

2021-11-29
Munro, William J., Nemoto, Kae.  2020.  Routing on Quantum Repeater Networks. 2020 Conference on Lasers and Electro-Optics (CLEO). :1–2.
The design of large-scale quantum networks and any future quantum internet will rely on quantum repeaters and how quantum information flows through it. Tasks performed on such networks will go well beyond quantum key distribution and are likely to include quantum remote sensing and distributed quantum computation. In this presentation we will explore the various ways that such networks could be designed to support those advanced tasks. Critical to this will be quantum routing which we should is highly dependent on the repeater architecture. We introduce a quantum quality of service to help characterize the systems performance and shows how it leads interesting network and routing behavior.
2021-11-08
Hedabou, Mustapha, Abdulsalam, Yunusa Simpa.  2020.  Efficient and Secure Implementation of BLS Multisignature Scheme on TPM. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
In many applications, software protection can not be sufficient to provide high security needed by some critical applications. A noteworthy example are the bitcoin wallets. Designed the most secure piece of software, their security can be compromised by a simple piece of malware infecting the device storing keys used for signing transactions. Secure hardware devices such as Trusted Platform Module (TPM) offers the ability to create a piece of code that can run unmolested by the rest of software applications hosted in the same machine. This has turned out to be a valuable approach for preventing several malware threats. Unfortunately, their restricted functionalities make them inconsistent with the use of multi and threshold signature mechanisms which are in the heart of real world cryptocurrency wallets implementation. This paper proposes an efficient multi-signature scheme that fits the requirement of the TPM. Based on discrete logarithm and pairings, our scheme does not require any interaction between signers and provide the same benefits as the well established BLS signature scheme. Furthermore, we proposed a formal model of our design and proved it security in a semi-honest model. Finally, we implemented a prototype of our design and studied its performance. From our experimental analysis, the proposed design is highly efficient and can serve as a groundwork for using TPM in future cryptocurrency wallets.
2021-08-31
Djordjevic, Ivan B..  2020.  Cluster States-based Quantum Networks. 2020 IEEE Photonics Conference (IPC). :1—2.
We propose to implement multipartite quantum communication network (QCN) by employing the cluster- state-based concept. The proposed QCN can be used to: (i) perform distributed quantum computing, (ii) teleport quantum states between any two nodes in QCN, and (iii) enable next generation of cyber security systems.
Pan, Ziwen, Djordjevic, Ivan B..  2020.  Security of Satellite-Based CV-QKD under Realistic Assumptions. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
With the vastly growing need for secure communication, quantum key distribution (QKD) has been developed to provide high security for communications against potential attacks from the fast-developing quantum computers. Among different QKD protocols, continuous variable (CV-) QKD employing Gaussian modulated coherent states has been promising for its complete security proof and its compatibility with current communication systems in implementation with homodyne or heterodyne detection. Since satellite communication has been more and more important in developing global communication networks, there have been concerns about the security in satellite communication and how we should evaluate the security of CV-QKD in such scenarios. To better analyse the secure key rate (SKR) in this case, in this invited paper we investigate the CV-QKD SKR lower bounds under realistic assumptions over a satellite-to-satellite channel. We also investigate the eavesdropper's best strategy to apply in these scenarios. We demonstrate that for these channel conditions with well-chosen carrier centre frequency and receiver aperture size, based on channel parameters, we can optimize SKR correspondingly. The proposed satellite-based QKD system provides high security level for the coming 5G and beyond networks, the Internet of things, self-driving cars, and other fast-developing applications.
Zisu, Liliana.  2020.  Quantum High Secure Direct Communication with Authentication. 2020 13th International Conference on Communications (COMM). :129—132.
A quantum high secure direct communication with authentication protocol is proposed by using single photons. The high security of the protocol is achieved on levels. The first level involves the verification of the quantum channel security by using fake photons. The authentication process is also ensured by the fake photons. The second level of security is given by the use of multiple polarization bases. The secret message is encoded in groups of photons; each single character of the message is associated with m (m≥7) photons. Thus, at least 27 (128) characters will be encoded. In order to defeat the quantum teleportation attack, the string of bits associated to the secret message is encrypted with a secret string of bits by using XOR operator. Encryption of the sender's identity string and the receiver's identity string by the XOR operator with a random string of fake photons defends quantum man-in-the-middle attack efficiently. Quantum memory is required to implement our protocol. Storage of quantum information is a key element in quantum information processing and provides a more flexible, effective and efficient communication. Our protocol is feasible with current technologies.
Bobrysheva, Julia, Zapechnikov, Sergey.  2020.  Post-Quantum Security of Messaging Protocols: Analysis of Double Ratcheting Algorithm. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :2041—2044.
Development in the area of quantum technologies led to the appearance of first quantum computers. The threat of using a quantum computer for cryptanalysis requires wide implementing post-quantum security in computing algorithms and communication protocols. We evaluate the computational power of some existing quantum computers to illustrate the relevance of research in post-quantum security. One of the best ways to test post-quantum protocols is to embed them into some non-critical but widely-used sphere. Secure messaging is an excellent example of such an application. In the paper, we analyze the post-quantum security of well-known messaging specification Signal, which is considered to have high-security properties. The core of Signal specification is the Double Ratchet protocol. We notice and explain why it is not a post-quantum secure scheme. After that, we suggest some possible ways to improve the security features of Signal specification.
Tang, Zefan, Qin, Yanyuan, Jiang, Zimin, Krawec, Walter O., Zhang, Peng.  2020.  Quantum-Secure Networked Microgrids. 2020 IEEE Power Energy Society General Meeting (PESGM). :1—5.
The classical key distribution systems used for data transmission in networked microgrids (NMGs) rely on mathematical assumptions, which however can be broken by attacks from quantum computers. This paper addresses this quantum-era challenge by using quantum key distribution (QKD). Specifically, the novelty of this paper includes 1) a QKD-enabled communication architecture it devises for NMGs, 2) a real-time QKD- enabled NMGs testbed it builds in an RTDS environment, and 3) a novel two-level key pool sharing (TLKPS) strategy it designs to improve the system resilience against cyberattacks. Test results validate the effectiveness of the presented strategy, and provide insightful resources for building quantum-secure NMGs.
Tosh, Deepak, Galindo, Oscar, Kreinovich, Vladik, Kosheleva, Olga.  2020.  Towards Security of Cyber-Physical Systems using Quantum Computing Algorithms. 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE). :313—320.
For cyber-physical systems (CPS), ensuring process and data security is critically important since the corresponding infrastructure needs to have high operational efficiency with no downtime. There are many techniques available that make communications in CPS environments secure - such as enabling traffic encryption between sensors and the computers processing the sensor's data, incorporating message authentication codes to achieve integrity, etc. However, most of these techniques are dependent on some form of symmetric or asymmetric cryptographic algorithms like AES and RSA. These algorithms are under threat because of the emerging quantum computing paradigm: with quantum computing, these encryption algorithms can be potentially broken. It is therefore desirable to explore the use of quantum cryptography - which cannot be broken by quantum computing - for securing the classical communications infrastructure deployed in CPS. In this paper, we discuss possible consequences of this option. We also explain how quantum computers can help even more: namely, they can be used to maximize the system's security where scalability is never a constraint, and to ensure we are not wasting time cycles on communicating and processing irrelevant information.
Shaik, Enaul haq, Rangaswamy, Nakkeeran.  2020.  Implementation of Quantum Gates based Logic Circuits using IBM Qiskit. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
Quantum computing is an emerging field that depends upon the basic properties of quantum physics and principles of classical systems. This leads a way to develop systems to solve complex problems that a classical system cannot do. In this article, we present simple methods to implement logic circuits using quantum gates. Logic gates and circuits are defined with quantum gates using Qiskit in Python. Later, they are verified with quantum circuits created by using IBM Quantum. Moreover, we propose a way of instantiating the basic logic circuits to design high-end logic expressions. As per our knowledge, the proposed simple approach may be helpful to solve the complex logical problems in near future.
2021-08-03
Xia, Shaoxian, Wang, Zheng, Hou, Zhanbin, Ye, Hongshu, Xue, Binbin, Wang, Shouzhi, Zhang, Xuecheng, Yang, Kewen.  2020.  Design of Quantum Key Fusion Model for Power Multi-terminal. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :196—199.
With the construction of State Grid informatization, professional data such as operation inspection, marketing, and regulation have gradually shifted from offline to online. In recent years, cyberspace security incidents have occurred frequently, and national and group cybersecurity threats have emerged. As the next-generation communication system, quantum security has to satisfy the security requirements. Also, it is especially important to build the fusion application of energy network quantum private communication technology and conventional network, and to form a safe and reliable quantum-level communication technology solution suitable for the power grid. In this paper, from the perspective of the multi-terminal quantum key application, combined with a mature electricity consumption information collection system, a handheld meter reading solution based on quantum private communication technology is proposed to effectively integrate the two and achieve technological upgrading. First, from the technical theory and application fields, the current situation of quantum private communication technology and its feasibility of combining with classical facilities are introduced and analyzed. Then, the hardware security module and handheld meter reading terminal equipment are taken as typical examples to design and realize quantum key shared storage, business security process application model; finally, based on the overall environment of quantum key distribution, the architecture design of multi-terminal quantum key application verification is implemented to verify the quantum key business application process.