Visible to the public Biblio

Found 1422 results

Filters: First Letter Of Title is A  [Clear All Filters]
2020-08-13
Wang, Tianyi, Chow, Kam Pui.  2019.  Automatic Tagging of Cyber Threat Intelligence Unstructured Data using Semantics Extraction. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :197—199.
Threat intelligence, information about potential or current attacks to an organization, is an important component in cyber security territory. As new threats consecutively occurring, cyber security professionals always keep an eye on the latest threat intelligence in order to continuously lower the security risks for their organizations. Cyber threat intelligence is usually conveyed by structured data like CVE entities and unstructured data like articles and reports. Structured data are always under certain patterns that can be easily analyzed, while unstructured data have more difficulties to find fixed patterns to analyze. There exists plenty of methods and algorithms on information extraction from structured data, but no current work is complete or suitable for semantics extraction upon unstructured cyber threat intelligence data. In this paper, we introduce an idea of automatic tagging applying JAPE feature within GATE framework to perform semantics extraction upon cyber threat intelligence unstructured data such as articles and reports. We extract token entities from each cyber threat intelligence article or report and evaluate the usefulness of them. A threat intelligence ontology then can be constructed with the useful entities extracted from related resources and provide convenience for professionals to find latest useful threat intelligence they need.
Sadeghi, Koosha, Banerjee, Ayan, Gupta, Sandeep K. S..  2019.  An Analytical Framework for Security-Tuning of Artificial Intelligence Applications Under Attack. 2019 IEEE International Conference On Artificial Intelligence Testing (AITest). :111—118.
Machine Learning (ML) algorithms, as the core technology in Artificial Intelligence (AI) applications, such as self-driving vehicles, make important decisions by performing a variety of data classification or prediction tasks. Attacks on data or algorithms in AI applications can lead to misclassification or misprediction, which can fail the applications. For each dataset separately, the parameters of ML algorithms should be tuned to reach a desirable classification or prediction accuracy. Typically, ML experts tune the parameters empirically, which can be time consuming and does not guarantee the optimal result. To this end, some research suggests an analytical approach to tune the ML parameters for maximum accuracy. However, none of the works consider the ML performance under attack in their tuning process. This paper proposes an analytical framework for tuning the ML parameters to be secure against attacks, while keeping its accuracy high. The framework finds the optimal set of parameters by defining a novel objective function, which takes into account the test results of both ML accuracy and its security against attacks. For validating the framework, an AI application is implemented to recognize whether a subject's eyes are open or closed, by applying k-Nearest Neighbors (kNN) algorithm on her Electroencephalogram (EEG) signals. In this application, the number of neighbors (k) and the distance metric type, as the two main parameters of kNN, are chosen for tuning. The input data perturbation attack, as one of the most common attacks on ML algorithms, is used for testing the security of the application. Exhaustive search approach is used to solve the optimization problem. The experiment results show k = 43 and cosine distance metric is the optimal configuration of kNN for the EEG dataset, which leads to 83.75% classification accuracy and reduces the attack success rate to 5.21%.
2020-08-10
Mansour, Ahmad, Malik, Khalid M., Kaso, Niko.  2019.  AMOUN: Lightweight Scalable Multi-recipient Asymmetric Cryptographic Scheme. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0838–0846.
Securing multi-party communication is very challenging particularly in dynamic networks. Existing multi-recipient cryptographic schemes pose variety of limitations. These include: requiring trust among all recipients to make an agreement, high computational cost for both encryption and decryption, and additional communication overhead when group membership changes. To overcome these limitations, this paper introduces a novel multi-recipient asymmetric cryptographic scheme, AMOUN. This scheme enables the sender to possibly send different messages in one ciphertext to multiple recipients to better utilize network resources, while ensuring that each recipient only retrieves its own designated message. Security analysis demonstrates that proposed scheme is secure against well-known attacks. Evaluation results demonstrate that lightweight AMOUN outperforms RSA and Multi-RSA in terms of computational cost for both encryption and decryption. For a given prime size, in case of encryption, AMOUN achieves 86% and 98% lower average computational cost than RSA and Multi-RSA, respectively; while for decryption, it shows performance improvement of 98% compared to RSA and Multi-RSA.
Li, Wei, Mclernon, Des, Wong, Kai-Kit, Wang, Shilian, Lei, Jing, Zaidi, Syed Ali Raza.  2019.  Asymmetric Physical Layer Encryption for Wireless Communications. IEEE Access. 7:46959–46967.
In this paper, we establish a cryptographic primitive for wireless communications. An asymmetric physical layer encryption (PLE) scheme based on elliptic curve cryptography is proposed. Compared with the conventional symmetric PLE, asymmetric PLE avoids the need of key distribution on a private channel, and it has more tools available for processing complex-domain signals to confuse possible eavesdroppers when compared with upper-layer public key encryption. We use quantized information entropy to measure the constellation confusion degree. The numerical results show that the proposed scheme provides greater confusion to eavesdroppers and yet does not affect the bit error rate (BER) of the intended receiver (the information entropy of the constellation increases to 17.5 for 9-bit quantization length). The scheme also has low latency and complexity [O(N2.37), where N is a fixed block size], which is particularly attractive for implementation.
Onaolapo, A.K., Akindeji, K.T..  2019.  Application of Artificial Neural Network for Fault Recognition and Classification in Distribution Network. 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :299–304.
Occurrence of faults in power systems is unavoidable but their timely recognition and location enhances the reliability and security of supply; thereby resulting in economic gain to consumers and power utility alike. Distribution Network (DN) is made smarter by the introduction of sensors and computers into the system. In this paper, detection and classification of faults in DN using Artificial Neural Network (ANN) is emphasized. This is achieved through the employment of Back Propagation Algorithm (BPA) of the Feed Forward Neural Network (FFNN) using three phase voltages and currents as inputs. The simulations were carried out using the MATLAB® 2017a. ANN with various hidden layers were analyzed and the results authenticate the effectiveness of the method.
Zhang, Xinman, He, Tingting, Xu, Xuebin.  2019.  Android-Based Smartphone Authentication System Using Biometric Techniques: A Review. 2019 4th International Conference on Control, Robotics and Cybernetics (CRC). :104–108.
As the technological progress of mobile Internet, smartphone based on Android OS accounts for the vast majority of market share. The traditional encryption technology cannot resolve the dilemma in smartphone information leakage, and the Android-based authentication system in view of biometric recognition emerge to offer more reliable information assurance. In this paper, we summarize several biometrics providing their attributes. Furthermore, we also review the algorithmic framework and performance index acting on authentication techniques. Thus, typical identity authentication systems including their experimental results are concluded and analyzed in the survey. The article is written with an intention to provide an in-depth overview of Android-based biometric verification systems to the readers.
2020-08-07
Hasan, Kamrul, Shetty, Sachin, Ullah, Sharif.  2019.  Artificial Intelligence Empowered Cyber Threat Detection and Protection for Power Utilities. 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). :354—359.
Cyber threats have increased extensively during the last decade, especially in smart grids. Cybercriminals have become more sophisticated. Current security controls are not enough to defend networks from the number of highly skilled cybercriminals. Cybercriminals have learned how to evade the most sophisticated tools, such as Intrusion Detection and Prevention Systems (IDPS), and Advanced Persistent Threat (APT) is almost invisible to current tools. Fortunately, the application of Artificial Intelligence (AI) may increase the detection rate of IDPS systems, and Machine Learning (ML) techniques can mine data to detect different attack stages of APT. However, the implementation of AI may bring other risks, and cybersecurity experts need to find a balance between risk and benefits.
Zhu, Tianqing, Yu, Philip S..  2019.  Applying Differential Privacy Mechanism in Artificial Intelligence. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1601—1609.
Artificial Intelligence (AI) has attracted a large amount of attention in recent years. However, several new problems, such as privacy violations, security issues, or effectiveness, have been emerging. Differential privacy has several attractive properties that make it quite valuable for AI, such as privacy preservation, security, randomization, composition, and stability. Therefore, this paper presents differential privacy mechanisms for multi-agent systems, reinforcement learning, and knowledge transfer based on those properties, which proves that current AI can benefit from differential privacy mechanisms. In addition, the previous usage of differential privacy mechanisms in private machine learning, distributed machine learning, and fairness in models is discussed, bringing several possible avenues to use differential privacy mechanisms in AI. The purpose of this paper is to deliver the initial idea of how to integrate AI with differential privacy mechanisms and to explore more possibilities to improve AIs performance.
Smith, Gary.  2019.  Artificial Intelligence and the Privacy Paradox of Opportunity, Big Data and The Digital Universe. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :150—153.
Artificial Intelligence (AI) can and does use individual's data to make predictions about their wants, their needs, their influences on them and predict what they could do. The use of individual's data naturally raises privacy concerns. This article focuses on AI, the privacy issue against the backdrop of the endless growth of the Digital Universe where Big Data, AI, Data Analytics and 5G Technology live and grow in The Internet of Things (IoT).
Davenport, Amanda, Shetty, Sachin.  2019.  Air Gapped Wallet Schemes and Private Key Leakage in Permissioned Blockchain Platforms. 2019 IEEE International Conference on Blockchain (Blockchain). :541—545.

In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.

2020-08-03
Chowdhary, Ankur, Sengupta, Sailik, Alshamrani, Adel, Huang, Dijiang, Sabur, Abdulhakim.  2019.  Adaptive MTD Security using Markov Game Modeling. 2019 International Conference on Computing, Networking and Communications (ICNC). :577–581.
Large scale cloud networks consist of distributed networking and computing elements that process critical information and thus security is a key requirement for any environment. Unfortunately, assessing the security state of such networks is a challenging task and the tools used in the past by security experts such as packet filtering, firewall, Intrusion Detection Systems (IDS) etc., provide a reactive security mechanism. In this paper, we introduce a Moving Target Defense (MTD) based proactive security framework for monitoring attacks which lets us identify and reason about multi-stage attacks that target software vulnerabilities present in a cloud network. We formulate the multi-stage attack scenario as a two-player zero-sum Markov Game (between the attacker and the network administrator) on attack graphs. The rewards and transition probabilities are obtained by leveraging the expert knowledge present in the Common Vulnerability Scoring System (CVSS). Our framework identifies an attacker's optimal policy and places countermeasures to ensure that this attack policy is always detected, thus forcing the attacker to use a sub-optimal policy with higher cost.
Al-Emadi, Sara, Al-Ali, Abdulla, Mohammad, Amr, Al-Ali, Abdulaziz.  2019.  Audio Based Drone Detection and Identification using Deep Learning. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :459–464.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly accessible to the public due to their high availability with affordable prices while being equipped with better technology. However, this raises a great concern from both the cyber and physical security perspectives since UAVs can be utilized for malicious activities in order to exploit vulnerabilities by spying on private properties, critical areas or to carry dangerous objects such as explosives which makes them a great threat to the society. Drone identification is considered the first step in a multi-procedural process in securing physical infrastructure against this threat. In this paper, we present drone detection and identification methods using deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Convolutional Recurrent Neural Network (CRNN). These algorithms will be utilized to exploit the unique acoustic fingerprints of the flying drones in order to detect and identify them. We propose a comparison between the performance of different neural networks based on our dataset which features audio recorded samples of drone activities. The major contribution of our work is to validate the usage of these methodologies of drone detection and identification in real life scenarios and to provide a robust comparison of the performance between different deep neural network algorithms for this application. In addition, we are releasing the dataset of drone audio clips for the research community for further analysis.
2020-07-30
Wang, Tianhao, Kerschbaum, Florian.  2019.  Attacks on Digital Watermarks for Deep Neural Networks. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2622—2626.
Training deep neural networks is a computationally expensive task. Furthermore, models are often derived from proprietary datasets that have been carefully prepared and labelled. Hence, creators of deep learning models want to protect their models against intellectual property theft. However, this is not always possible, since the model may, e.g., be embedded in a mobile app for fast response times. As a countermeasure watermarks for deep neural networks have been developed that embed secret information into the model. This information can later be retrieved by the creator to prove ownership. Uchida et al. proposed the first such watermarking method. The advantage of their scheme is that it does not compromise the accuracy of the model prediction. However, in this paper we show that their technique modifies the statistical distribution of the model. Using this modification we can not only detect the presence of a watermark, but even derive its embedding length and use this information to remove the watermark by overwriting it. We show analytically that our detection algorithm follows consequentially from their embedding algorithm and propose a possible countermeasure. Our findings shall help to refine the definition of undetectability of watermarks for deep neural networks.
2020-07-27
Gorodnichev, Mikhail G., Kochupalov, Alexander E., Gematudinov, Rinat A..  2018.  Asynchronous Rendering of Texts in iOS Applications. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :643–645.
This article is devoted to new asynchronous methods for rendering text information in mobile applications for iOS operating system.
Adetunji, Akinbobola Oluwaseun, Butakov, Sergey, Zavarsky, Pavol.  2018.  Automated Security Configuration Checklist for Apple iOS Devices Using SCAP v1.2. 2018 International Conference on Platform Technology and Service (PlatCon). :1–6.
The security content automation includes configurations of large number of systems, installation of patches securely, verification of security-related configuration settings, compliance with security policies and regulatory requirements, and ability to respond quickly when new threats are discovered [1]. Although humans are important in information security management, humans sometimes introduce errors and inconsistencies in an organization due to manual nature of their tasks [2]. Security Content Automation Protocol was developed by the U.S. NIST to automate information security management tasks such as vulnerability and patch management, and to achieve continuous monitoring of security configurations in an organization. In this paper, SCAP is employed to develop an automated security configuration checklist for use in verifying Apple iOS device configuration against the defined security baseline to enforce policy compliance in an enterprise.
2020-07-24
Zhang, Yong, Liu, Yingjie.  2019.  Application of STPA in Temporary Speed Restriction Sending Scenario of Train Control System Based on Vehicle-Vehicle Communication. 2019 5th International Conference on Control Science and Systems Engineering (ICCSSE). :99—103.
In this paper, System Theoretic Process Analysis (STPA) method was used to analyze the security of Temporary Speed Restriction (TSR) sending scenario in train control system based on vehicle-vehicle communication. The security of this scenario was analyzed according to the analysis process of STPA method. Firstly, Unsafe Control Actions (UCAs) in this scenario were identified and Control Defects (CDs) were analyzed. After that, the corresponding Security Design Requirements (SDRs) were formulated according to the obtained control defects. Finally, the time automata network model of TSR sending scenario was established to verify SDRs. The result shows that: STPA method is suitable to discover the unsafe factors and safety hazards of train control system and take corresponding safety measures to prevent the occurrence of accidents.
Dong, Qiuxiang, Huang, Dijiang, Luo, Jim, Kang, Myong.  2018.  Achieving Fine-Grained Access Control with Discretionary User Revocation over Cloud Data. 2018 IEEE Conference on Communications and Network Security (CNS). :1—9.
Cloud storage solutions have gained momentum in recent years. However, cloud servers can not be fully trusted. Data access control have becomes one of the main impediments for further adoption. One appealing approach is to incorporate the access control into encrypted data, thus removing the need to trust the cloud servers. Among existing cryptographic solutions, Ciphertext Policy Attribute-Based Encryption (CP-ABE) is well suited for fine-grained data access control in cloud storage. As promising as it is, user revocation is a cumbersome problem that impedes its wide application. To address this issue, we design an access control system called DUR-CP-ABE, which implements identity-based User Revocation in a data owner Discretionary way. In short, the proposed solution provides the following salient features. First, user revocation enforcement is based on the discretion of the data owner, thus providing more flexibility. Second, no private key updates are needed when user revocation occurs. Third, the proposed scheme allows for group revocation of affiliated users in a batch operation. To the best of our knowledge, DUR-CP-ABE is the first CP-ABE solution to provide affiliation- based batch revocation functionality, which fits naturally into organizations' Identity and Access Management (IAM) structure. The analysis shows that the proposed access control system is provably secure and efficient in terms of computation, communi- cation and storage.
Li, Chunhua, He, Jinbiao, Lei, Cheng, Guo, Chan, Zhou, Ke.  2018.  Achieving Privacy-Preserving CP-ABE Access Control with Multi-Cloud. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :801—808.
Cloud storage service makes it very convenient for people to access and share data. At the same time, the confidentiality and privacy of user data is also facing great challenges. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme is widely considered to be the most suitable security access control technology for cloud storage environment. Aiming at the problem of privacy leakage caused by single-cloud CP-ABE which is commonly adopted in the current schemes, this paper proposes a privacy-preserving CP-ABE access control scheme using multi-cloud architecture. By improving the traditional CP-ABE algorithm and introducing a proxy to cut the user's private key, it can ensure that only a part of the user attribute set can be obtained by a single cloud, which effectively protects the privacy of user attributes. Meanwhile, the intermediate logical structure of the access policy tree is stored in proxy, and only the leaf node information is stored in the ciphertext, which effectively protects the privacy of the access policy. Security analysis shows that our scheme is effective against replay and man-in-the-middle attacks, as well as user collusion attack. Experimental results also demonstrates that the multi-cloud CP-ABE does not significantly increase the overhead of storage and encryption compared to the single cloud scheme, but the access control overhead decreases as the number of clouds increases. When the access policy is expressed with a AND gate structure, the decryption overhead is obviously less than that of a single cloud environment.
Wang, Fucai, Shi, Ting, Li, Shijin.  2019.  Authorization of Searchable CP-ABE Scheme with Attribute Revocation in Cloud Computing. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :204—208.

Most searchable attribute-based encryption schemes only support the search for single-keyword without attribute revocation, the data user cannot quickly detect the validity of the ciphertext returned by the cloud service provider. Therefore, this paper proposes an authorization of searchable CP-ABE scheme with attribute revocation and applies the scheme to the cloud computing environment. The data user to send the authorization information to the authorization server for authorization, assists the data user to effectively detect the ciphertext information returned by the cloud service provider while supporting the revocation of the user attribute in a fine-grained access control structure without updating the key during revocation stage. In the random oracle model based on the calculation of Diffie-Hellman problem, it is proved that the scheme can satisfy the indistinguishability of ciphertext and search trapdoor. Finally, the performance analysis shows that the scheme has higher computational efficiency.

Xiang, Guangli, Li, Beilei, Fu, Xiannong, Xia, Mengsen, Ke, Weiyi.  2019.  An Attribute Revocable CP-ABE Scheme. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :198—203.

Ciphertext storage can effectively solve the security problems in cloud storage, among which the ciphertext policy attribute-based encryption (CP-ABE) is more suitable for ciphertext access control in cloud storage environment for it can achieve one-to-many ciphertext sharing. The existing attribute encryption scheme CP-ABE has problems with revocation such as coarse granularity, untimeliness, and low efficiency, which cannot meet the demands of cloud storage. This paper proposes an RCP-ABE scheme that supports real-time revocable fine-grained attributes for the existing attribute revocable scheme, the scheme of this paper adopts the version control technology to realize the instant revocation of the attributes. In the key update mechanism, the subset coverage technology is used to update the key, which reduces the workload of the authority. The experimental analysis shows that RCP-ABE is more efficient than other schemes.

2020-07-20
Masood, Raziqa, Pandey, Nitin, Rana, Q. P..  2017.  An approach of dredging the interconnected nodes and repudiating attacks in cloud network. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). :49–53.
In cloud computing environment, there are malignant nodes which create a huge problem to transfer data in communication. As there are so many models to prevent the data over the network, here we try to prevent or make secure to the network by avoiding mallicious nodes in between the communication. So the probabiliostic approach what we use here is a coherent tool to supervise the security challenges in the cloud environment. The matter of security for cloud computing is a superficial quality of service from cloud service providers. Even, cloud computing dealing everyday with new challenges, which is in process to well investigate. This research work draws the light on aspect regarding with the cloud data transmission and security by identifying the malignanat nodes in between the communication. Cloud computing network shared the common pool of resources like hardware, framework, platforms and security mechanisms. therefore Cloud Computing cache the information and deliver the secure transaction of data, so privacy and security has become the bone of contention which hampers the process to execute safely. To ensure the security of data in cloud environment, we proposed a method by implementing white box cryptography on RSA algorithm and then we work on the network, and find the malignant nodes which hampering the communication by hitting each other in the network. Several existing security models already have been deployed with security attacks. A probabilistic authentication and authorization approach is introduced to overcome this attack easily. It observes corrupted nodes before hitting with maximum probability. here we use a command table to conquer the malignant nodes. then we do the comparative study and it shows the probabilistic authentication and authorization protocol gives the performance much better than the old ones.
Boumiza, Safa, Braham, Rafik.  2019.  An Anomaly Detector for CAN Bus Networks in Autonomous Cars based on Neural Networks. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–6.
The domain of securing in-vehicle networks has attracted both academic and industrial researchers due to high danger of attacks on drivers and passengers. While securing wired and wireless interfaces is important to defend against these threats, detecting attacks is still the critical phase to construct a robust secure system. There are only a few results on securing communication inside vehicles using anomaly-detection techniques despite their efficiencies in systems that need real-time detection. Therefore, we propose an intrusion detection system (IDS) based on Multi-Layer Perceptron (MLP) neural network for Controller Area Networks (CAN) bus. This IDS divides data according to the ID field of CAN packets using K-means clustering algorithm, then it extracts suitable features and uses them to train and construct the neural network. The proposed IDS works for each ID separately and finally it combines their individual decisions to construct the final score and generates alert in the presence of attack. The strength of our intrusion detection method is that it works simultaneously for two types of attacks which will eliminate the use of several separate IDS and thus reduce the complexity and cost of implementation.
Hayward, Jake, Tomlinson, Andrew, Bryans, Jeremy.  2019.  Adding Cyberattacks To An Industry-Leading CAN Simulator. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :9–16.
Recent years have seen an increase in the data usage in cars, particularly as they become more autonomous and connected. With the rise in data use have come concerns about automotive cyber-security. An in-vehicle network shown to be particularly vulnerable is the Controller Area Network (CAN), which is the communication bus used by the car's safety critical and performance critical components. Cyber attacks on the CAN have been demonstrated, leading to research to develop attack detection and attack prevention systems. Such research requires representative attack demonstrations and data for testing. Obtaining this data is problematical due to the expense, danger and impracticality of using real cars on roads or tracks for example attacks. Whilst CAN simulators are available, these tend to be configured for testing conformance and functionality, rather than analysing security and cyber vulnerability. We therefore adapt a leading, industry-standard, CAN simulator to incorporate a core set of cyber attacks that are representative of those proposed by other researchers. Our adaptation allows the user to configure the attacks, and can be added easily to the free version of the simulator. Here we describe the simulator and, after reviewing the attacks that have been demonstrated and discussing their commonalities, we outline the attacks that we have incorporated into the simulator.
Stroup, Ronald L., Niewoehner, Kevin R..  2019.  Application of Artificial Intelligence in the National Airspace System – A Primer. 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS). :1–14.

The National Airspace System (NAS), as a portion of the US' transportation system, has not yet begun to model or adopt integration of Artificial Intelligence (AI) technology. However, users of the NAS, i.e., Air transport operators, UAS operators, etc. are beginning to use this technology throughout their operations. At issue within the broader aviation marketplace, is the continued search for a solution set to the persistent daily delays and schedule perturbations that occur within the NAS. Despite billions invested through the NAS Modernization Program, the delays persist in the face of reduced demand for commercial routings. Every delay represents an economic loss to commercial transport operators, passengers, freighters, and any business depending on the transportation performance. Therefore, the FAA needs to begin to address from an advanced concepts perspective, what this wave of new technology will affect as it is brought to bear on various operations performance parameters, including safety, security, efficiency, and resiliency solution sets. This paper is the first in a series of papers we are developing to explore the application of AI in the National Airspace System (NAS). This first paper is meant to get everyone in the aviation community on the same page, a primer if you will, to start the technical discussions. This paper will define AI; the capabilities associated with AI; current use cases within the aviation ecosystem; and how to prepare for insertion of AI in the NAS. The next series of papers will look at NAS Operations Theory utilizing AI capabilities and eventually leading to a future intelligent NAS (iNAS) environment.

Nguyen, Lan K., Tringe, Joseph W., Bosler, Clayton, Brunnenmeyer, David.  2019.  An Algorithmic Approach to Highly Resilient SATCOM. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :89–94.

This paper proposes a generic SATCOM control loop in a generic multivector structure to facilitate predictive analysis for achieving resiliency under time varying circumstances. The control loop provides strategies and actions in the context of game theory to optimize the resources for SATCOM networks. Details of the theoretic game and resources optimization approaches are discussed in the paper.