Visible to the public Biblio

Found 1422 results

Filters: First Letter Of Title is A  [Clear All Filters]
2020-07-16
Luo, Shaojie, Zhang, Lichen, Guo, Nannan.  2019.  Architecture of Cyber-Physical Systems Based on Cloud. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :251—257.

Cyber-Physical System (CPS) and Cloud Computing are emerging and important research fields in recent years. It is a current trend that CPS combines with Cloud Computing. Compared with traditional CPS, Cloud can improve its performance, but Cloud failures occur occasionally. The existing cloud-based CPS architectures rely too much on the Cloud, ignoring the risk and problems caused by Cloud failures, thus making the reliability of CPS not guaranteed. In order to solve the risk and problems above, spare parts are involved based on the research of cloud-based CPS. An architecture of cloud-based CPS with spare parts is proposed and two solutions for spare parts are designed. Agricultural intelligent temperature control system is used as an example to model and simulate the proposed architecture and solutions using Simulink. The simulation results prove the effectiveness of the proposed architecture and solutions, which enhance the reliability of cloud-based CPS.

2020-07-13
Ghosh, Debanjana, Chatterjee, Soumyajit, Kothari, Vasudha, Kumar, Aakash, Nair, Mahesh, Lokesh, Ella.  2019.  An application of Li-Fi based Wireless Communication System using Visible Light Communication. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–3.
This paper attempts to clarify the concept and applications of Li-Fi technology. The current Wi-Fi network use Radio Frequency waves, but the usage of the available RF spectrum is limited. Therefore a new technology, Li-Fi has come into picture. Li-Fi is a recently developed technology. This paper explains how array of LEDs are used to transmit data in the visible light spectrum. This technology has advantages like security, increased accessible spectrum, low latency efficiency and much higher speed as compared to Wi- Fi. The aim of this research paper is to design a Li-Fi transceiver using Arduino which is able to transmit and receive data in binary format. The software coding is done in Arduino- Uno platform. Successful transmission and reception of data(alphanumeric) has been done.
Mahmood, Shah.  2019.  The Anti-Data-Mining (ADM) Framework - Better Privacy on Online Social Networks and Beyond. 2019 IEEE International Conference on Big Data (Big Data). :5780–5788.
The unprecedented and enormous growth of cloud computing, especially online social networks, has resulted in numerous incidents of the loss of users' privacy. In this paper, we provide a framework, based on our anti-data-mining (ADM) principle, to enhance users' privacy against adversaries including: online social networks; search engines; financial terminal providers; ad networks; eavesdropping governments; and other parties who can monitor users' content from the point where the content leaves users' computers to within the data centers of these information accumulators. To achieve this goal, our framework proactively uses the principles of suppression of sensitive data and disinformation. Moreover, we use social-bots in a novel way for enhanced privacy and provide users' with plausible deniability for their photos, audio, and video content uploaded online.
2020-07-09
Duan, Huayi, Zheng, Yifeng, Du, Yuefeng, Zhou, Anxin, Wang, Cong, Au, Man Ho.  2019.  Aggregating Crowd Wisdom via Blockchain: A Private, Correct, and Robust Realization. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1—10.

Crowdsensing, driven by the proliferation of sensor-rich mobile devices, has emerged as a promising data sensing and aggregation paradigm. Despite useful, traditional crowdsensing systems typically rely on a centralized third-party platform for data collection and processing, which leads to concerns like single point of failure and lack of operation transparency. Such centralization hinders the wide adoption of crowdsensing by wary participants. We therefore explore an alternative design space of building crowdsensing systems atop the emerging decentralized blockchain technology. While enjoying the benefits brought by the public blockchain, we endeavor to achieve a consolidated set of desirable security properties with a proper choreography of latest techniques and our customized designs. We allow data providers to safely contribute data to the transparent blockchain with the confidentiality guarantee on individual data and differential privacy on the aggregation result. Meanwhile, we ensure the service correctness of data aggregation and sanitization by delicately employing hardware-assisted transparent enclave. Furthermore, we maintain the robustness of our system against faulty data providers that submit invalid data, with a customized zero-knowledge range proof scheme. The experiment results demonstrate the high efficiency of our designs on both mobile client and SGX-enabled server, as well as reasonable on-chain monetary cost of running our task contract on Ethereum.

2020-07-06
Mao, Zhong, Yan, Yujie, Wu, Jiahao, Hajjar, Jerome F., Padir, Taskin.  2019.  Automated Damage Assessment of Critical Infrastructure Using Online Mapping Technique with Small Unmanned Aircraft Systems. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.
Rapid inspection and assessment of critical infrastructure after man-made and natural disasters is a matter of homeland security. The primary aim of this paper is to demonstrate the potential of leveraging small Unmanned Aircraft System (sUAS) in support of the rapid recovery of critical infrastructure in the aftermath of catastrophic events. We propose our data collection, detection and assessment system, using a sUAS equipped with a Lidar and a camera. This method provides a solution in fast post-disaster response and assists human responders in damage investigation.
Cerotti, D., Codetta-Raiteri, D., Egidi, L., Franceschinis, G., Portinale, L., Dondossola, G., Terruggia, R..  2019.  Analysis and Detection of Cyber Attack Processes targeting Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
This paper proposes an approach based on Bayesian Networks to support cyber security analysts in improving the cyber-security posture of the smart grid. We build a system model that exploits real world context information from both Information and Operational Technology environments in the smart grid, and we use it to demonstrate sample predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the many dependencies involved in the assessment of security threats, and of supporting the security analysts in planning defense and detection mechanisms for energy digital infrastructures.
Xu, Zhiheng, Ng, Daniel Jun Xian, Easwaran, Arvind.  2019.  Automatic Generation of Hierarchical Contracts for Resilience in Cyber-Physical Systems. 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :1–11.

With the growing scale of Cyber-Physical Systems (CPSs), it is challenging to maintain their stability under all operating conditions. How to reduce the downtime and locate the failures becomes a core issue in system design. In this paper, we employ a hierarchical contract-based resilience framework to guarantee the stability of CPS. In this framework, we use Assume Guarantee (A-G) contracts to monitor the non-functional properties of individual components (e.g., power and latency), and hierarchically compose such contracts to deduce information about faults at the system level. The hierarchical contracts enable rapid fault detection in large-scale CPS. However, due to the vast number of components in CPS, manually designing numerous contracts and the hierarchy becomes challenging. To address this issue, we propose a technique to automatically decompose a root contract into multiple lower-level contracts depending on I/O dependencies between components. We then formulate a multi-objective optimization problem to search the optimal parameters of each lower-level contract. This enables automatic contract refinement taking into consideration the communication overhead between components. Finally, we use a case study from the manufacturing domain to experimentally demonstrate the benefits of the proposed framework.

Chegenizadeh, Mostafa, Ali, Mohammad, Mohajeri, Javad, Aref, Mohammad Reza.  2019.  An Anonymous Attribute-based Access Control System Supporting Access Structure Update. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :85–91.
It is quite common nowadays for clients to outsource their personal data to a cloud service provider. However, it causes some new challenges in the area of data confidentiality and access control. Attribute-based encryption is a promising solution for providing confidentiality and fine-grained access control in a cloud-based cryptographic system. Moreover, in some cases, to preserve the privacy of clients and data, applying hidden access structures is required. Also, a data owner should be able to update his defined access structure at any time when he is online or not. As in several real-world application scenarios like e-health systems, the anonymity of recipients, and the possibility of updating access structures are two necessary requirements. In this paper, for the first time, we propose an attribute-based access control scheme with hidden access structures enabling the cloud to update access structures on expiry dates defined by a data owner.
2020-07-03
Usama, Muhammad, Asim, Muhammad, Qadir, Junaid, Al-Fuqaha, Ala, Imran, Muhammad Ali.  2019.  Adversarial Machine Learning Attack on Modulation Classification. 2019 UK/ China Emerging Technologies (UCET). :1—4.

Modulation classification is an important component of cognitive self-driving networks. Recently many ML-based modulation classification methods have been proposed. We have evaluated the robustness of 9 ML-based modulation classifiers against the powerful Carlini & Wagner (C-W) attack and showed that the current ML-based modulation classifiers do not provide any deterrence against adversarial ML examples. To the best of our knowledge, we are the first to report the results of the application of the C-W attack for creating adversarial examples against various ML models for modulation classification.

Jia, Guanbo, Miller, Paul, Hong, Xin, Kalutarage, Harsha, Ban, Tao.  2019.  Anomaly Detection in Network Traffic Using Dynamic Graph Mining with a Sparse Autoencoder. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :458—465.

Network based attacks on ecommerce websites can have serious economic consequences. Hence, anomaly detection in dynamic network traffic has become an increasingly important research topic in recent years. This paper proposes a novel dynamic Graph and sparse Autoencoder based Anomaly Detection algorithm named GAAD. In GAAD, the network traffic over contiguous time intervals is first modelled as a series of dynamic bipartite graph increments. One mode projection is performed on each bipartite graph increment and the adjacency matrix derived. Columns of the resultant adjacency matrix are then used to train a sparse autoencoder to reconstruct it. The sum of squared errors between the reconstructed approximation and original adjacency matrix is then calculated. An online learning algorithm is then used to estimate a Gaussian distribution that models the error distribution. Outlier error values are deemed to represent anomalous traffic flows corresponding to possible attacks. In the experiment, a network emulator was used to generate representative ecommerce traffic flows over a time period of 225 minutes with five attacks injected, including SYN scans, host emulation and DDoS attacks. ROC curves were generated to investigate the influence of the autoencoder hyper-parameters. It was found that increasing the number of hidden nodes and their activation level, and increasing sparseness resulted in improved performance. Analysis showed that the sparse autoencoder was unable to encode the highly structured adjacency matrix structures associated with attacks, hence they were detected as anomalies. In contrast, SVD and variants, such as the compact matrix decomposition, were found to accurately encode the attack matrices, hence they went undetected.

Kakadiya, Rutvik, Lemos, Reuel, Mangalan, Sebin, Pillai, Meghna, Nikam, Sneha.  2019.  AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :201—204.

Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.

Adari, Suman Kalyan, Garcia, Washington, Butler, Kevin.  2019.  Adversarial Video Captioning. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :24—27.
In recent years, developments in the field of computer vision have allowed deep learning-based techniques to surpass human-level performance. However, these advances have also culminated in the advent of adversarial machine learning techniques, capable of launching targeted image captioning attacks that easily fool deep learning models. Although attacks in the image domain are well studied, little work has been done in the video domain. In this paper, we show it is possible to extend prior attacks in the image domain to the video captioning task, without heavily affecting the video's playback quality. We demonstrate our attack against a state-of-the-art video captioning model, by extending a prior image captioning attack known as Show and Fool. To the best of our knowledge, this is the first successful method for targeted attacks against a video captioning model, which is able to inject 'subliminal' perturbations into the video stream, and force the model to output a chosen caption with up to 0.981 cosine similarity, achieving near-perfect similarity to chosen target captions.
2020-06-26
Nath, Anubhav, Biswas, Reetam Sen, Pal, Anamitra.  2019.  Application of Machine Learning for Online Dynamic Security Assessment in Presence of System Variability and Additive Instrumentation Errors. 2019 North American Power Symposium (NAPS). :1—6.
Large-scale blackouts that have occurred in the past few decades have necessitated the need to do extensive research in the field of grid security assessment. With the aid of synchrophasor technology, which uses phasor measurement unit (PMU) data, dynamic security assessment (DSA) can be performed online. However, existing applications of DSA are challenged by variability in system conditions and unaccounted for measurement errors. To overcome these challenges, this research develops a DSA scheme to provide security prediction in real-time for load profiles of different seasons in presence of realistic errors in the PMU measurements. The major contributions of this paper are: (1) develop a DSA scheme based on PMU data, (2) consider seasonal load profiles, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA with and without erroneous measurements. The performance of this approach is tested on the IEEE-118 bus system. Comparative analysis of the accuracies of the ML algorithms under different operating scenarios highlights the importance of considering realistic errors and variability in system conditions while creating a DSA scheme.
Jiang, Jianguo, Chen, Jiuming, Gu, Tianbo, Choo, Kim-Kwang Raymond, Liu, Chao, Yu, Min, Huang, Weiqing, Mohapatra, Prasant.  2019.  Anomaly Detection with Graph Convolutional Networks for Insider Threat and Fraud Detection. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :109—114.

Anomaly detection generally involves the extraction of features from entities' or users' properties, and the design of anomaly detection models using machine learning or deep learning algorithms. However, only considering entities' property information could lead to high false positives. We posit the importance of also considering connections or relationships between entities in the detecting of anomalous behaviors and associated threat groups. Therefore, in this paper, we design a GCN (graph convolutional networks) based anomaly detection model to detect anomalous behaviors of users and malicious threat groups. The GCN model could characterize entities' properties and structural information between them into graphs. This allows the GCN based anomaly detection model to detect both anomalous behaviors of individuals and associated anomalous groups. We then evaluate the proposed model using a real-world insider threat data set. The results show that the proposed model outperforms several state-of-art baseline methods (i.e., random forest, logistic regression, SVM, and CNN). Moreover, the proposed model can also be applied to other anomaly detection applications.

2020-06-15
Kin-Cleaves, Christy, Ker, Andrew D..  2018.  Adaptive Steganography in the Noisy Channel with Dual-Syndrome Trellis Codes. 2018 IEEE International Workshop on Information Forensics and Security (WIFS). :1–7.
Adaptive steganography aims to reduce distortion in the embedding process, typically using Syndrome Trellis Codes (STCs). However, in the case of non-adversarial noise, these are a bad choice: syndrome codes are fragile by design, amplifying the channel error rate into unacceptably-high payload error rates. In this paper we examine the fragility of STCs in the noisy channel, and consider how this can be mitigated if their use cannot be avoided altogether. We also propose an extension called Dual-Syndrome Trellis Codes, that combines error correction and embedding in the same Viterbi process, which slightly outperforms a straight-forward combination of standard forward error correction and STCs.
2020-06-12
Deng, Juan, Zhou, Bing, Shi, YiLiang.  2018.  Application of Improved Image Hash Algorithm in Image Tamper Detection. 2018 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :629—632.

In order to study the application of improved image hashing algorithm in image tampering detection, based on compressed sensing and ring segmentation, a new image hashing technique is studied. The image hash algorithm based on compressed sensing and ring segmentation is proposed. First, the algorithm preprocesses the input image. Then, the ring segment is used to extract the set of pixels in each ring region. These aggregate data are separately performed compressed sensing measurements. Finally, the hash value is constructed by calculating the inner product of the measurement vector and the random vector. The results show that the algorithm has good perceived robustness, uniqueness and security. Finally, the ROC curve is used to analyze the classification performance. The comparison of ROC curves shows that the performance of the proposed algorithm is better than FM-CS, GF-LVQ and RT-DCT.

2020-06-04
Bang, Junseong, Lee, Youngho, Lee, Yong-Tae, Park, Wonjoo.  2019.  AR/VR Based Smart Policing For Fast Response to Crimes in Safe City. 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). :470—475.

With advances in information and communication technologies, cities are getting smarter to enhance the quality of human life. In smart cities, safety (including security) is an essential issue. In this paper, by reviewing several safe city projects, smart city facilities for the safety are presented. With considering the facilities, a design for a crime intelligence system is introduced. Then, concentrating on how to support police activities (i.e., emergency call reporting reception, patrol activity, investigation activity, and arrest activity) with immersive technologies in order to reduce a crime rate and to quickly respond to emergencies in the safe city, smart policing with augmented reality (AR) and virtual reality (VR) is explained.

2020-06-01
Khorev, P.B..  2018.  Authenticate Users with Their Work on the Internet. 2018 IV International Conference on Information Technologies in Engineering Education (Inforino). :1–4.
Examines the shortcomings of existing methods of user authentication when accessing remote information systems. Proposed method of multi-factor authentication based on validation of knowledge of a secret password and verify that the habits and preferences of Internet user's interests, defined by registration in the system. Identifies the language and tools implementation of the proposed authentication algorithm.
Laranjeiro, Nuno, Gomez, Camilo, Schiavone, Enrico, Montecchi, Leonardo, Carvalho, Manoel J. M., Lollini, Paolo, Micskei, Zoltán.  2019.  Addressing Verification and Validation Challenges in Future Cyber-Physical Systems. 2019 9th Latin-American Symposium on Dependable Computing (LADC). :1–2.
Cyber-physical systems are characterized by strong interactions between their physical and computation parts. The increasing complexity of such systems, now used in numerous application domains (e.g., aeronautics, healthcare), in conjunction with hard to predict surrounding environments or the use of non-traditional middleware and with the presence of non-deterministic or non-explainable software outputs, tend to make traditional Verification and Validation (V&V) techniques ineffective. This paper presents the H2020 ADVANCE project, which aims precisely at addressing the Verification and Validation challenges that the next-generation of cyber-physical systems bring, by exploring techniques, methods and tools for achieving the technical objective of improving the overall efficiency and effectiveness of the V&V process. From a strategic perspective, the goal of the project is to create an international network of expertise on the topic of V&V of cyber-physical systems.
2020-05-29
Arefin, Sayed Erfan, Heya, Tasnia Ashrafi, Chakrabarty, Amitabha.  2019.  Agent Based Fog Architecture using NDN and Trust Management for IoT. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :257—262.

Statistics suggests, proceeding towards IoT generation, is increasing IoT devices at a drastic rate. This will be very challenging for our present-day network infrastructure to manage, this much of data. This may risk, both security and traffic collapsing. We have proposed an infrastructure with Fog Computing. The Fog layer consists two layers, using the concepts of Service oriented Architecture (SOA) and the Agent based composition model which ensures the traffic usage reduction. In order to have a robust and secured system, we have modified the Fog based agent model by replacing the SOA with secured Named Data Network (NDN) protocol. Knowing the fact that NDN has the caching layer, we are combining NDN and with Fog, as it can overcome the forwarding strategy limitation and memory constraints of NDN by the Agent Society, in the Middle layer along with Trust management.

2020-05-26
Kumari, Alpana, Krishnan, Shoba.  2019.  Analysis of Malicious Behavior of Blackhole and Rushing Attack in MANET. 2019 International Conference on Nascent Technologies in Engineering (ICNTE). :1–6.

Mobile Adhoc Network (MANET) are the networks where network nodes uses wireless links to transfer information from one node to another without making use of existing infrastructure. There is no node in the network to control and coordinate establishment of connections between the network nodes. Hence the network nodes performs dual function of both node as well as router. Due to dynamically changing network scenarios, absence of centralization and lack of resources, MANETs have a threat of large number of security attacks. Hence security attacks need to be evaluated in order to find effective methods to avoid or remove them. In this paper malicious behavior of Blackhole attack and Rushing attack is studied and analyzed for QoS metrics.

2020-05-22
Sheth, Utsav, Dutta, Sanghamitra, Chaudhari, Malhar, Jeong, Haewon, Yang, Yaoqing, Kohonen, Jukka, Roos, Teemu, Grover, Pulkit.  2018.  An Application of Storage-Optimal MatDot Codes for Coded Matrix Multiplication: Fast k-Nearest Neighbors Estimation. 2018 IEEE International Conference on Big Data (Big Data). :1113—1120.
We propose a novel application of coded computing to the problem of the nearest neighbor estimation using MatDot Codes (Fahim et al., Allerton'17) that are known to be optimal for matrix multiplication in terms of recovery threshold under storage constraints. In approximate nearest neighbor algorithms, it is common to construct efficient in-memory indexes to improve query response time. One such strategy is Multiple Random Projection Trees (MRPT), which reduces the set of candidate points over which Euclidean distance calculations are performed. However, this may result in a high memory footprint and possibly paging penalties for large or high-dimensional data. Here we propose two techniques to parallelize MRPT that exploit data and model parallelism respectively by dividing both the data storage and the computation efforts among different nodes in a distributed computing cluster. This is especially critical when a single compute node cannot hold the complete dataset in memory. We also propose a novel coded computation strategy based on MatDot codes for the model-parallel architecture that, in a straggler-prone environment, achieves the storage-optimal recovery threshold, i.e., the number of nodes that are required to serve a query. We experimentally demonstrate that, in the absence of straggling, our distributed approaches require less query time than execution on a single processing node, providing near-linear speedups with respect to the number of worker nodes. Our experiments on real systems with simulated straggling, we also show that in a straggler-prone environment, our strategy achieves a faster query execution than the uncoded strategy.
Varricchio, Valerio, Frazzoli, Emilio.  2018.  Asymptotically Optimal Pruning for Nonholonomic Nearest-Neighbor Search. 2018 IEEE Conference on Decision and Control (CDC). :4459—4466.
Nearest-Neighbor Search (NNS) arises as a key component of sampling-based motion planning algorithms and it is known as their asymptotic computational bottleneck. Algorithms for exact Nearest-Neighbor Search rely on explicit distance comparisons to different extents. However, in motion planning, evaluating distances is generally a computationally demanding task, since the metric is induced by the minimum cost of steering a dynamical system between states. In the presence of driftless nonholonomic constraints, we propose efficient pruning techniques for the k-d tree algorithm that drastically reduce the number of distance evaluations performed during a query. These techniques exploit computationally convenient lower and upper bounds to the geodesic distance of the corresponding sub-Riemannian geometry. Based on asymptotic properties of the reachable sets, we show that the proposed pruning techniques are optimal, modulo a constant factor, and we provide experimental results with the Reeds-Shepp vehicle model.
[Anonymous].  2018.  Approximate Nearest Neighbor Search Based on Hierarchical Multi-Index Hashing.

Nowadays, hashing methods are widely used in large-scale approximate nearest neighbor search due to its efficient storage and fast retrieval speed. By these methods, the original data is usually hashed into binary codes which enables to measure the similarity by Hamming distance. When dealing with large-scale data, their binary codes can be used as direct indices in a hash table. However, codes longer than 32 bits are obviously not efficient. For the given binary codes, this paper proposes a multi-index hashing structure based on binary code substrings partitioning. Since substrings partitioning is essentially a combinatorial optimization problem, we propose a hierarchical and recursive partitioning approach to obtain an approximate solution to it. Furthermore, we adopt a query-adaptive fine-grained ranking approach in the neighbor search stage to alleviate the imbalance between multi-index tables. Finally, extensive experiments are conducted on two datasets MNIST and CIFAR-10, demonstrating that our method achieves state-of-the-art performance in terms of efficiency, precision and recall rate.

Horzyk, Adrian, Starzyk, Janusz A..  2019.  Associative Data Model in Search for Nearest Neighbors and Similar Patterns. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :933—940.
This paper introduces a biologically inspired associative data model and structure for finding nearest neighbors and similar patterns. The method can be used as an alternative to the classical approaches to accelerate the search for such patterns using various priorities for attributes according to the Sebestyen measure. The presented structure, together with algorithms developed in this paper can be useful in various computational intelligence tasks like pattern matching, recognition, clustering, classification, multi-criterion search etc. This approach is particularly useful for the on-line operation of associative neural network graphs. Graphs that dynamically develop their structure during learning on training data. The results of experiments show that the associative approach can substantially accelerate the nearest neighbor search and that associative structures can also be used as a model for KNN tasks. Finally, this paper presents how the associative structures can be used to self-organize data and represent knowledge about them in the associative way, which yields new search approaches described in this paper.