Biblio
Information Fusion (IF) systems have long exploited data provided by hard (physics-based) sensors with the aspiration of making sense of the environment they are monitoring. In recent times, the IF community has recognized the potential of utilizing data generated by people, also known as soft data. In this study, we demonstrate how course of action (CoA) generation, one of the key elements of Level 3 High-Level Information Fusion and a vital component for security and defense decision support systems, can be augmented using soft (human-derived) data for improved mission effectiveness. This conceptualization is validated through an elaborate experiment situated in the maritime world. To the best of the authors' knowledge, this is the first study to apply soft data to automatic CoA generation in the maritime domain.
Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that embedded devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Web security is still difficult and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the devices' vendor, type, or architecture. To reach this goal, we perform full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we automatically analyze the web interfaces within the firmware using both static and dynamic analysis tools. We also present some interesting case-studies and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale.
Important information regarding the learning experience and relative preparedness of Computer Science students can be obtained by analyzing their coding activity at a fine-grained level, using an online IDE that records student code editing, compiling, and testing activities down to the individual keystroke. We report results from analyses of student coding patterns using such an online IDE. In particular, we gather data from a group of students performing an assigned programming lab, using the online IDE indicated to gather statistics. We extract high-level statistics from the student data, and apply supervised learning techniques to identify those that are the most salient prediction of student success as measured by later performance in the class. We use these results to make predictions of course performance for another student group, and report on the reliability of those predictions
Recognition of facial expressions authenticity is quite troublesome for humans. Therefore, it is an interesting topic for the computer vision community, as the developed algorithms for facial expressions authenticity estimation may be used as indicators of deception. This paper discusses the state-of-the art methods developed for smile veracity estimation and proposes a plan of development and validation of a novel approach to automated discrimination between genuine and posed facial expressions. The proposed fully automated technique is based on the extension of the high-dimensional Local Binary Patterns (LBP) to the spatio-temporal domain and combines them with the dynamics of facial landmarks movements. The proposed technique will be validated on several existing smile databases and a novel database created with the use of a high speed camera. Finally, the developed framework will be applied for the detection of deception in real life scenarios.
Machine learning is enabling a myriad innovations, including new algorithms for cancer diagnosis and self-driving cars. The broad use of machine learning makes it important to understand the extent to which machine-learning algorithms are subject to attack, particularly when used in applications where physical security or safety is at risk. In this paper, we focus on facial biometric systems, which are widely used in surveillance and access control. We define and investigate a novel class of attacks: attacks that are physically realizable and inconspicuous, and allow an attacker to evade recognition or impersonate another individual. We develop a systematic method to automatically generate such attacks, which are realized through printing a pair of eyeglass frames. When worn by the attacker whose image is supplied to a state-of-the-art face-recognition algorithm, the eyeglasses allow her to evade being recognized or to impersonate another individual. Our investigation focuses on white-box face-recognition systems, but we also demonstrate how similar techniques can be used in black-box scenarios, as well as to avoid face detection.
Android malware growth has been increasing dramatically as well as the diversity and complicity of their developing techniques. Machine learning techniques have been applied to detect malware by modeling patterns of static features and dynamic behaviors of malware. The accuracy rates of the machine learning classifiers differ depending on the quality of the features. We increase the quality of the features by relating between the apps' features and the features that are required to deliver its category's functionality. To measure the benign app references, the features of the top rated apps in a specific category are utilized to train a malware detection classifier for that given category. Android apps stores such as Google Play organize apps into different categories. Each category has its distinct functionalities which means the apps under a specific category are similar in their static and dynamic features. In other words, benign apps under a certain category tend to share a common set of features. On the contrary, malicious apps tend to have abnormal features, which are uncommon for the category that they belong to. This paper proposes category-based machine learning classifiers to enhance the performance of classification models at detecting malicious apps under a certain category. The intensive machine learning experiments proved that category-based classifiers report a remarkable higher average performance compared to non-category based.
When running large human computation tasks in the real-world, honeypots play an important role for assessing the overall quality of the work produced. The generation of such honeypots can be a significant burden on the task owner as they require specific characteristics in their design and implementation and continuous maintenance when operating data pipelines that include a human computation component. In this extended abstract we outline a novel approach for creating honeypots using automatically generated questions from a reference knowledge base with the ability to control such parameters as topic and difficulty.
Active defense is a popular defense technique based on systems that hinder an attacker's progress by design, rather than reactively responding to an attack only after its detection. Well-known active defense systems are honeypots. Honeypots are fake systems, designed to look like real production systems, aimed at trapping an attacker, and analyzing his attack strategy and goals. These types of systems suffer from a major weakness: it is extremely hard to design them in such a way that an attacker cannot distinguish them from a real production system. In this paper, we advocate that, instead of adding additional fake systems in the corporate network, the production systems themselves should be instrumented to provide active defense capabilities. This perspective to active defense allows containing costs and complexity, while at the same time provides the attacker with a more realistic-looking target, and gives the Incident Response Team more time to identify the attacker. The proposed proof-of-concept prototype system can be used to implement active defense in any corporate production network, with little upfront work, and little maintenance.
When customers purchase a product or sign up for service from a company, they often are required to agree to a Privacy Policy or Terms of Service agreement. Many of these policies are lengthy, and a typical customer agrees to them without reading them carefully if at all. To address this problem, we have developed a prototype automatic text summarization system which is specifically designed for privacy policies. Our system generates a summary of a policy statement by identifying important sentences from the statement, categorizing these sentences by which of 5 "statement categories" the sentence addresses, and displaying to a user a list of the sentences which match each category. Our system incorporates keywords identified by a human domain expert and rules that were obtained by machine learning, and they are combined in an ensemble architecture. We have tested our system on a sample corpus of privacy statements, and preliminary results are promising.
To adapt to the rapidly evolving landscape of cyber threats, security professionals are actively exchanging Indicators of Compromise (IOC) (e.g., malware signatures, botnet IPs) through public sources (e.g. blogs, forums, tweets, etc.). Such information, often presented in articles, posts, white papers etc., can be converted into a machine-readable OpenIOC format for automatic analysis and quick deployment to various security mechanisms like an intrusion detection system. With hundreds of thousands of sources in the wild, the IOC data are produced at a high volume and velocity today, which becomes increasingly hard to manage by humans. Efforts to automatically gather such information from unstructured text, however, is impeded by the limitations of today's Natural Language Processing (NLP) techniques, which cannot meet the high standard (in terms of accuracy and coverage) expected from the IOCs that could serve as direct input to a defense system. In this paper, we present iACE, an innovation solution for fully automated IOC extraction. Our approach is based upon the observation that the IOCs in technical articles are often described in a predictable way: being connected to a set of context terms (e.g., "download") through stable grammatical relations. Leveraging this observation, iACE is designed to automatically locate a putative IOC token (e.g., a zip file) and its context (e.g., "malware", "download") within the sentences in a technical article, and further analyze their relations through a novel application of graph mining techniques. Once the grammatical connection between the tokens is found to be in line with the way that the IOC is commonly presented, these tokens are extracted to generate an OpenIOC item that describes not only the indicator (e.g., a malicious zip file) but also its context (e.g., download from an external source). Running on 71,000 articles collected from 45 leading technical blogs, this new approach demonstrates a remarkable performance: it generated 900K OpenIOC items with a precision of 95% and a coverage over 90%, which is way beyond what the state-of-the-art NLP technique and industry IOC tool can achieve, at a speed of thousands of articles per hour. Further, by correlating the IOCs mined from the articles published over a 13-year span, our study sheds new light on the links across hundreds of seemingly unrelated attack instances, particularly their shared infrastructure resources, as well as the impacts of such open-source threat intelligence on security protection and evolution of attack strategies.
In this demo, we will display a smartphone authentication system that can automatically validate every touch interaction made on a smartphone using a smart watch worn by the phone's owner. The IMU sensors on a smart watch monitor the motion of the hand for specific signal characteristics, which is relayed to the phone. If the signal features match certain criteria then the touch is authenticated and the phone responds appropriately. If not, the phone's screen remains locked/unresponsive to the touch action. The challenge here is to be able to validate every touch gesture within acceptable limits of human perception.
Recently, Internet-based systems need to be changed their configuration dynamically. Traditional networks have very limited ability to cope up with such frequent changes and hinder innovations management and configuration procedures. To address this issue, Software Defined Networking (SDN) has been emerging as a new network architecture that allows for more flexibility through software-enabled network control. However, the dynamism of programmable networks also faces new security challenges that demand innovative solutions. Among the widespread mechanisms of SDN security control applications, anomaly-based IDS is an extremely effective technique in detecting both known and unknown (new) attack types. In this paper, we propose an anomaly-based Intrusion Detection architecture integrated on OpenFlow Switch. The proposed system can detect and prevent a network from many attack types, especially new attack types using anomaly detection. We implement the proposed system on the FPGA technology using a Xilinx Virtex-5 xc5vtx240t device. In this FPGA-based prototype, we integrate an anomaly-based intrusion detection technique to be able to defend against many attack types and anomalous on the network traffic. The experimental results show that our system achieves a detection rate exceeding 91.81% with a 0.55% false alarms rate at maximum.
Ensuring the integrity and security of the memory system is critical. Recent studies have shown serious security concerns due to "rowhammer" attacks, where repeated accesses to a row of memory cause bit flips in adjacent rows. Recent work by Google's Project Zero has shown how to leverage rowhammer-induced bit-flips as the basis for security exploits that include malicious code injection and memory privilege escalation. Being an important security concern, industry has attempted to defend against rowhammer attacks. Deployed defenses employ two strategies: (1) doubling the system DRAM refresh rate and (2) restricting access to the CLFLUSH instruction that attackers use to bypass the cache to increase memory access frequency (i.e., the rate of rowhammering). We demonstrate that such defenses are inadequte: we implement rowhammer attacks that both avoid using the CLFLUSH instruction and cause bit flips with a doubled refresh rate. Our next-generation CLFLUSH-free rowhammer attack bypasses the cache by manipulating cache replacement state to allow frequent misses out of the last-level cache to DRAM rows of our choosing. To protect existing systems from more advanced rowhammer attacks, we develop a software-based defense, ANVIL, which thwarts all known rowhammer attacks on existing systems. ANVIL detects rowhammer attacks by tracking the locality of DRAM accesses using existing hardware performance counters. Our detector identifies the rows being frequently accessed (i.e., the aggressors), then selectively refreshes the nearby victim rows to prevent hammering. Experiments running on real hardware with the SPEC2006 benchmarks show that ANVIL has less than a 1% false positive rate and an average slowdown of 1%. ANVIL is low-cost and robust, and our experiments indicate that it is an effective approach for protecting existing and future systems from even advanced rowhammer attacks.
Traditional authentication techniques such as static passwords are vulnerable to replay and guessing attacks. Recently, many studies have been conducted on keystroke dynamics as a promising behavioral biometrics for strengthening user authentication, however, current keystroke based solutions suffer from a numerous number of features with an insufficient number of samples which lead to a high verification error rate and high verification time. In this paper, a keystroke dynamics based authentication system is proposed for cloud environments that supports fixed and free text samples. The proposed system utilizes the ReliefF dimensionality reduction method, as a preprocessing step, to minimize the feature space dimensionality. The proposed system applies clustering to users' profile templates to reduce the verification time. The proposed system is applied to two different benchmark datasets. Experimental results prove the effectiveness and efficiency of the proposed system.
Growth of internet era and corporate sector dealings communication online has introduced crucial security challenges in cyber space. Statistics of recent large scale attacks defined new class of threat to online world, advanced persistent threat (APT) able to impact national security and economic stability of any country. From all APTs, botnet is one of the well-articulated and stealthy attacks to perform cybercrime. Botnet owners and their criminal organizations are continuously developing innovative ways to infect new targets into their networks and exploit them. The concept of botnet refers collection of compromised computers (bots) infected by automated software robots, that interact to accomplish some distributed task which run without human intervention for illegal purposes. They are mostly malicious in nature and allow cyber criminals to control the infected machines remotely without the victim's knowledge. They use various techniques, communication protocols and topologies in different stages of their lifecycle; also specifically they can upgrade their methods at any time. Botnet is global in nature and their target is to steal or destroy valuable information from organizations as well as individuals. In this paper we present real world botnet (APTs) survey.
Imposters gain unauthorized access to biometric recognition systems using fake biometric data of the legitimate user termed as spoofing. Spoofing of face recognition systems is done by photographs, 3D models and videos of the user. Attack video contains noise from the acquisition process. In this work, we use noise residual content of the video in order to detect spoofed videos. We take advantage of wavelet transform for representing the noise video. Samples of the noise video, termed as visual rhythm image is created for each video. Local Binary Pattern (LBP) and uniform Local Binary Pattern (LBPu2) are extracted from the visual rhythm image followed by classification using Support Vector Machine (SVM). Large size of video from which a number of frames are used for analysis results in huge execution timing. In this work the spoof detection algorithm is applied on various levels of subsections of the video frames resulting in reduced execution timing with reasonable detection accuracies.
Privacy enhancing technologies (PETs) are ubiquitous nowadays. They are beneficial for a wide range of users. However, PETs are not always used for legal activity. The present paper is focused on Tor users deanonimization1 using out-of-the box technologies and a basic machine learning algorithm. The aim of the work is to show that it is possible to deanonimize a small fraction of users without having a lot of resources and state-of-the-art machine learning techniques. The deanonimization is a very important task from the point of view of national security. To address this issue, we are using a website fingerprinting attack.
Self-disclosure is rewarding and provides significant benefits for individuals, but it also involves risks, especially in social media settings. We conducted an online experiment to study the relationship between content intimacy and willingness to self-disclose in social media, and how identification (real name vs. anonymous) and audience type (social ties vs. people nearby) moderate that relationship. Content intimacy is known to regulate self-disclosure in face-to-face communication: people self-disclose less as content intimacy increases. We show that such regulation persists in online social media settings. Further, although anonymity and an audience of social ties are both known to increase self-disclosure, it is unclear whether they (1) increase self-disclosure baseline for content of all intimacy levels, or (2) weaken intimacy's regulation effect, making people more willing to disclose intimate content. We show that intimacy always regulates self-disclosure, regardless of settings. We also show that anonymity mainly increases self-disclosure baseline and (sometimes) weakens the regulation. On the other hand, an audience of social ties increases the baseline but strengthens the regulation. Finally, we demonstrate that anonymity has a more salient effect on content of negative valence.The results are critical to understanding the dynamics and opportunities of self-disclosure in social media services that vary levels of identification and types of audience.
Today, outsourcing query processing tasks to remote cloud servers becomes a viable option; such outsourcing calls for encrypting data stored at the server so as to render it secure against eavesdropping adversaries and/or an honest-but-curious server itself. At the same time, to be efficiently managed, outsourced data should be indexed, and even adaptively so, as a side-effect of query processing. Computationally heavy encryption schemes render such outsourcing unattractive; an alternative, Order-Preserving Encryption Scheme (OPES), intentionally preserves and reveals the order in the data, hence is unattractive from the security viewpoint. In this paper, we propose and analyze a scheme for lightweight and indexable encryption, based on linear-algebra operations. Our scheme provides higher security than OPES and allows for range and point queries to be efficiently evaluated over encrypted numeric data, with decryption performed at the client side. We implement a prototype that performs incremental, query-triggered adaptive indexing over encrypted numeric data based on this scheme, without leaking order information in advance, and without prohibitive overhead, as our extensive experimental study demonstrates.
Self-describing key-value data formats such as JSON are becoming increasingly popular as application developers choose to avoid the rigidity imposed by the relational model. Database systems designed for these self-describing formats, such as MongoDB, encourage users to use denormalized, heavily nested data models so that relationships across records and other schema information need not be predefined or standardized. Such data models contribute to long-term development complexity, as their lack of explicit entity and relationship tracking burdens new developers unfamiliar with the dataset. Furthermore, the large amount of data repetition present in such data layouts can introduce update anomalies and poor scan performance, which reduce both the quality and performance of analytics over the data. In this paper we present an algorithm that automatically transforms the denormalized, nested data commonly found in NoSQL systems into traditional relational data that can be stored in a standard RDBMS. This process includes a schema generation algorithm that discovers relationships across the attributes of the denormalized datasets in order to organize those attributes into relational tables. It further includes a matching algorithm that discovers sets of attributes that represent overlapping entities and merges those sets together. These algorithms reduce data repetition, allow the use of data analysis tools targeted at relational data, accelerate scan-intensive algorithms over the data, and help users gain a semantic understanding of complex, nested datasets.
Steganography enables user to hide confidential data in any digital medium such that its existence cannot be concealed by the third party. Several research work is being is conducted to improve steganography algorithm's efficiency. Recent trends in computing technology use steganography as an important tool for hiding confidential data. This paper summarizes some of the research work conducted in the field of image steganography in spatial domain along with their advantages and disadvantages. Future research work and experimental results of some techniques is also being discussed. The key goal is to show the powerful impact of steganography in information hiding and image processing domain.
Internet of Things (IoT) is to connect objects of different application fields, functionality and technology. These objects are entirely addressable and use standard communication protocol. Intelligent agents are used to integrate Internet of Things with heterogeneous low-power embedded resource-constrained networked devices. This paper discusses with the implemented real world scenario of smart autonomous patient management with the assistance of semantic technology in IoT. It uses the Smart Semantic framework using domain ontologies to encapsulate the processed information from sensor networks. This embedded Agent based Semantic Internet of Things in healthcare (ASIOTH) system is having semantic logic and semantic value based Information to make the system as smart and intelligent. This paper aims at explaining in detail the technology drivers behind the IoT and health care with the information on data modeling, data mapping of existing IoT data into different other associated system data, workflow or the process flow behind the technical operations of the remote device coordination, the architecture of network, middleware, databases, application services. The challenges and the associated solution in this field are discussed with the use case.
The reconfiguration of FPGAs includes downloading the bit-stream file which contains the new design on the FPGA. The option to reconfigure FPGAs dynamically opens up the threat of stealing the Intellectual Property (IP) of the design. Since the configuration is usually stored in external memory, this can be easily tapped and read out by an eaves-dropper. This work presents a low cost solution in order to secure the reconfiguration of FPGAs. The proposed solution is based on an efficient-compact hardware implementation for AEGIS which is considered one of the candidates to the competition of CAESAR. The proposed architecture depends on using 1/4 AES-round for reducing the consumed area. We evaluated the presented design using 90 and 65 nm technologies. Our comparison to existing AES-based schemes reveals that the proposed design is better in terms of the hardware performance (Thr./mm2).
Software Defined Internet Exchange Points (SDXes) increase the flexibility of interdomain traffic delivery on the Internet. Yet, an SDX inherently requires multiple participants to have access to a single, shared physical switch, which creates the need for an authorization mechanism to mediate this access. In this paper, we introduce a logic and mechanism called FLANC (A Formal Logic for Authorizing Network Control), which authorizes each participant to control forwarding actions on a shared switch and also allows participants to delegate forwarding actions to other participants at the switch (e.g., a trusted third party). FLANC extends "says" and "speaks for" logic that have been previously designed for operating system objects to handle expressions involving network traffic flows. We describe FLANC, explain how participants can use it to express authorization policies for realistic interdomain routing settings, and demonstrate that it is efficient enough to operate in operational settings.
Securing cyber system is a major concern as security attacks become more and more sophisticated. We develop in this paper a novel graph-based Active Cyber Defense (ACD) model to proactively respond to cyber attacks. The proposed model is based on the use of a semantically rich graph to describe cyber systems, types of used interconnection between them, and security related data useful to develop active defense strategies. The developed model takes into consideration the probabilistic nature of cyber attacks, and their degree of complexity. In this context, analytics are provided to proactively test the impact of vulnerabilities/threats increase on the system, analyze the consequent behavior of cyber systems and security solution, and decide about the security state of the whole cyber system. Our model integrates in the same framework decisions made by cyber defenders based on their expertise and knowledge, and decisions that are automatically generated using security analytic rules.

