Visible to the public Biblio

Found 1126 results

Filters: First Letter Of Title is I  [Clear All Filters]
2021-07-08
Wahyudono, Bintang, Ogi, Dion.  2020.  Implementation of Two Factor Authentication based on RFID and Face Recognition using LBP Algorithm on Access Control System. 2020 International Conference on ICT for Smart Society (ICISS). CFP2013V-ART:1—6.
Studies on two-factor authentication based on RFID and face recognition have been carried out on a large scale. However, these studies didn't discuss the way to overcome the weaknesses of face recognition authentication in the access control systems. In this study, two authentication factors, RFID and face recognition, were implemented using the LBP (Local Binary Pattern) algorithm to overcome weaknesses of face recognition authentication in the access control system. Based on the results of performance testing, the access control system has 100% RFID authentication and 80% face recognition authentication. The average time for the RFID authentication process is 0.03 seconds, the face recognition process is 6.3885 seconds and the verification of the face recognition is 0.1970 seconds. The access control system can still work properly after three days without being switched off. The results of security testing showed that the capabilities spoofing detection has 100% overcome the photo attack.
Ozmen, Alper, Yildiz, Huseyin Ugur, Tavli, Bulent.  2020.  Impact of Minimizing the Eavesdropping Risks on Lifetime of Underwater Acoustic Sensor Networks. 2020 28th Telecommunications Forum (℡FOR). :1—4.
Underwater Acoustic Sensor Networks (UASNs) are often deployed in hostile environments, and they face many security threats. Moreover, due to the harsh characteristics of the underwater environment, UASNs are vulnerable to malicious attacks. One of the most dangerous security threats is the eavesdropping attack, where an adversary silently collects the information exchanged between the sensor nodes. Although careful assignment of transmission power levels and optimization of data flow paths help alleviate the extent of eavesdropping attacks, the network lifetime can be negatively affected since routing could be established using sub-optimal paths in terms of energy efficiency. In this work, two optimization models are proposed where the first model minimizes the potential eavesdropping risks in the network while the second model maximizes the network lifetime under a certain level of an eavesdropping risk. The results show that network lifetimes obtained when the eavesdropping risks are minimized significantly shorter than the network lifetimes obtained without considering any eavesdropping risks. Furthermore, as the countermeasures against the eavesdropping risks are relaxed, UASN lifetime is shown to be prolonged, significantly.
2021-07-07
Seneviratne, Piyumi, Perera, Dilanka, Samarasekara, Harinda, Keppitiyagama, Chamath, Thilakarathna, Kenneth, De Soyza, Kasun, Wijesekara, Primal.  2020.  Impact of Video Surveillance Systems on ATM PIN Security. 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). :59–64.
ATM transactions are verified using two-factor authentication. The PIN is one of the factors (something you know) and the ATM Card is the other factor (something you have). Therefore, banks make significant investments on PIN Mailers and HSMs to preserve the security and confidentiality in the generation, validation, management and the delivery of the PIN to their customers. Moreover, banks install surveillance cameras inside ATM cubicles as a physical security measure to prevent fraud and theft. However, in some cases, ATM PIN-Pad and the PIN entering process get revealed through the surveillance camera footage itself. We demonstrate that visibility of forearm movements is sufficient to infer PINs with a significant level of accuracy. Video footage of the PIN entry process simulated in an experimental setup was analyzed using two approaches. The human observer-based approach shows that a PIN can be guessed with a 30% of accuracy within 3 attempts whilst the computer-assisted analysis of footage gave an accuracy of 50%. The results confirm that ad-hoc installation of surveillance cameras can weaken ATM PIN security significantly by potentially exposing one factor of a two-factor authentication system. Our investigation also revealed that there are no guidelines, standards or regulations governing the placement of surveillance cameras inside ATM cubicles in Sri Lanka.
2021-06-30
Lim, Wei Yang Bryan, Xiong, Zehui, Niyato, Dusit, Huang, Jianqiang, Hua, Xian-Sheng, Miao, Chunyan.  2020.  Incentive Mechanism Design for Federated Learning in the Internet of Vehicles. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1—5.
In the Internet of Vehicles (IoV) paradigm, a model owner is able to leverage on the enhanced capabilities of Intelligent Connected Vehicles (ICV) to develop promising Artificial Intelligence (AI) based applications, e.g., for traffic efficiency. However, in some cases, a model owner may have insufficient data samples to build an effective AI model. To this end, we propose a Federated Learning (FL) based privacy preserving approach to facilitate collaborative FL among multiple model owners in the IoV. Our system model enables collaborative model training without compromising data privacy given that only the model parameters instead of the raw data are exchanged within the federation. However, there are two main challenges of incentive mismatches between workers and model owners, as well as among model owners. For the former, we leverage on the self-revealing mechanism in contract theory under information asymmetry. For the latter, we use the coalitional game theory approach that rewards model owners based on their marginal contributions. The numerical results validate the performance efficiency of our proposed hierarchical incentive mechanism design.
Solomon Doss, J. Kingsleen, Kamalakkannan, S..  2020.  IoT System Accomplishment using BlockChain in Validating and Data Security with Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :60—64.
In a block channel IoT system, sensitive details can be leaked by means of the proof of work or address check, as data or application Validation data is applied on the blockchain. In this, the zero-knowledge evidence is applied to a smart metering system to show how to improve the anonymity of the blockchain for privacy safety without disclosing information as a public key. Within this article, a blockchain has been implemented to deter security risks such as data counterfeiting by utilizing intelligent meters. Zero-Knowledge Proof, an anonymity blockchain technology, has been implemented through block inquiry to prevent threats to security like personal information infringement. It was suggested that intelligent contracts would be used to avoid falsification of intelligent meter data and abuse of personal details.
2021-06-24
Moran, Kevin, Palacio, David N., Bernal-Cárdenas, Carlos, McCrystal, Daniel, Poshyvanyk, Denys, Shenefiel, Chris, Johnson, Jeff.  2020.  Improving the Effectiveness of Traceability Link Recovery using Hierarchical Bayesian Networks. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :873—885.
Traceability is a fundamental component of the modern software development process that helps to ensure properly functioning, secure programs. Due to the high cost of manually establishing trace links, researchers have developed automated approaches that draw relationships between pairs of textual software artifacts using similarity measures. However, the effectiveness of such techniques are often limited as they only utilize a single measure of artifact similarity and cannot simultaneously model (implicit and explicit) relationships across groups of diverse development artifacts. In this paper, we illustrate how these limitations can be overcome through the use of a tailored probabilistic model. To this end, we design and implement a HierarchiCal PrObabilistic Model for SoftwarE Traceability (Comet) that is able to infer candidate trace links. Comet is capable of modeling relationships between artifacts by combining the complementary observational prowess of multiple measures of textual similarity. Additionally, our model can holistically incorporate information from a diverse set of sources, including developer feedback and transitive (often implicit) relationships among groups of software artifacts, to improve inference accuracy. We conduct a comprehensive empirical evaluation of Comet that illustrates an improvement over a set of optimally configured baselines of ≈14% in the best case and ≈5% across all subjects in terms of average precision. The comparative effectiveness of Comet in practice, where optimal configuration is typically not possible, is likely to be higher. Finally, we illustrate Comet's potential for practical applicability in a survey with developers from Cisco Systems who used a prototype Comet Jenkins plugin.
Iffländer, Lukas, Beierlieb, Lukas, Fella, Nicolas, Kounev, Samuel, Rawtani, Nishant, Lange, Klaus-Dieter.  2020.  Implementing Attack-aware Security Function Chain Reordering. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :194—199.
Attack-awareness recognizes self-awareness for security systems regarding the occurring attacks. More frequent and intense attacks on cloud and network infrastructures are pushing security systems to the limit. With the end of Moore's Law, merely scaling against these attacks is no longer economically justified. Previous works have already dealt with the adoption of Software-defined Networking and Network Function Virtualization in security systems and used both approaches to optimize performance by the intelligent placement of security functions. In our previous works, we already made a case for taking the order of security functions into account and dynamically adapt this order. In this work, we propose a reordering framework, provide a proof-of-concept implementation, and validate this implementation in an evaluation environment. The framework's evaluation proves the feasibility of our concept.
2021-06-02
Das, Sima, Panda, Ganapati.  2020.  An Initiative Towards Privacy Risk Mitigation Over IoT Enabled Smart Grid Architecture. 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation (ICREISG). :168—173.
The Internet of Things (IoT) has transformed many application domains with realtime, continuous, automated control and information transmission. The smart grid is one such futuristic application domain in execution, with a large-scale IoT network as its backbone. By leveraging the functionalities and characteristics of IoT, the smart grid infrastructure benefits not only consumers, but also service providers and power generation organizations. The confluence of IoT and smart grid comes with its own set of challenges. The underlying cyberspace of IoT, though facilitates communication (information propagation) among devices of smart grid infrastructure, it undermines the privacy at the same time. In this paper we propose a new measure for quantifying the probability of privacy leakage based on the behaviors of the devices involved in the communication process. We construct a privacy stochastic game model based on the information shared by the device, and the access to the compromised device. The existence of Nash Equilibrium strategy of the game is proved theoretically. We experimentally validate the effectiveness of the privacy stochastic game model.
Wang, Lei, Manchester, Ian R., Trumpf, Jochen, Shi, Guodong.  2020.  Initial-Value Privacy of Linear Dynamical Systems. 2020 59th IEEE Conference on Decision and Control (CDC). :3108—3113.
This paper studies initial-value privacy problems of linear dynamical systems. We consider a standard linear time-invariant system with random process and measurement noises. For such a system, eavesdroppers having access to system output trajectories may infer the system initial states, leading to initial-value privacy risks. When a finite number of output trajectories are eavesdropped, we consider a requirement that any guess about the initial values can be plausibly denied. When an infinite number of output trajectories are eavesdropped, we consider a requirement that the initial values should not be uniquely recoverable. In view of these two privacy requirements, we define differential initial-value privacy and intrinsic initial-value privacy, respectively, for the system as metrics of privacy risks. First of all, we prove that the intrinsic initial-value privacy is equivalent to unobservability, while the differential initial-value privacy can be achieved for a privacy budget depending on an extended observability matrix of the system and the covariance of the noises. Next, the inherent network nature of the considered linear system is explored, where each individual state corresponds to a node and the state and output matrices induce interaction and sensing graphs, leading to a network system. Under this network system perspective, we allow the initial states at some nodes to be public, and investigate the resulting intrinsic initial- value privacy of each individual node. We establish necessary and sufficient conditions for such individual node initial-value privacy, and also prove that the intrinsic initial-value privacy of individual nodes is generically determined by the network structure.
2021-06-01
Pandey, Pragya, Kaur, Inderjeet.  2020.  Improved MODLEACH with Effective Energy Utilization Technique for WSN. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :987—992.
Wireless sensor network (WSNs) formed from an enormous number of sensor hub with the capacity to detect and process information in the physical world in a convenient way. The sensor nodes contain a battery imperative, which point of confinement the system lifetime. Because of vitality limitations, the arrangement of WSNs will required development methods to keep up the system lifetime. The vitality productive steering is the need of the innovative WSN systems to build the process time of system. The WSN system is for the most part battery worked which should be ration as conceivable as to cause system to continue longer and more. WSN has developed as a significant figuring stage in the ongoing couple of years. WSN comprises of countless sensor points, which are worked by a little battery. The vitality of the battery worked nodes is the defenseless asset of the WSN, which is exhausted at a high rate when data is transmitted, because transmission vitality is subject to the separation of transmission. Sensor nodes can be sent in the cruel condition. When they are conveyed, it ends up difficult to supplant or energize its battery. Therefore, the battery intensity of sensor hub ought to be utilized proficiently. Many steering conventions have been proposed so far to boost the system lifetime and abatement the utilization vitality, the fundamental point of the sensor hubs is information correspondence, implies move of information packs from one hub to other inside the system. This correspondence is finished utilizing grouping and normal vitality of a hub. Each bunch chooses a pioneer called group head. The group heads CHs are chosen based by and large vitality and the likelihood. There are number of bunching conventions utilized for the group Head determination, the principle idea is the existence time of a system which relies on the normal vitality of the hub. In this work we proposed a model, which utilizes the leftover vitality for group head choice and LZW pressure Technique during the transmission of information bundles from CHs to base station. Work enhanced the throughput and life time of system and recoveries the vitality of hub during transmission and moves more information in less vitality utilization. The Proposed convention is called COMPRESSED MODLEACH.
Hashemi, Seyed Mahmood.  2020.  Intelligent Approaches for the Trust Assessment. 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). :348–352.
There is a need for suitable approaches to trust assessment to cover the problems of human life. Trust assessment for the information communication related to the quality of service (QoS). The server sends data packets to the client(s) according to the trust assessment. The motivation of this paper is designing a proper approach for the trust assessment process. We propose two methods that are based on the fuzzy systems and genetic algorithm. We compare the results of proposed approaches that can guide to select the proper approaches.
Saigopal, Venkata Venugopal Rao Gudlur, Raju, Valliappan.  2020.  IIoT Digital Forensics and Major Security issues. 2020 International Conference on Computational Intelligence (ICCI). :233–236.
the significant area in the growing field of internet security and IIoT connectivity is the way that forensic investigators will conduct investigation process with devices connected to industrial sensors. This part of process is known as IIoT digital forensics and investigation. The main research on IIoT digital forensic investigation has been done, but the current investigation process has revealed and identified major security issues need to be addressed. In parallel, major security issues faced by traditional forensic investigators dealing with IIoT connectivity and data security. This paper address the issues of the challenges and major security issues identified by review conducted in the prospective and emphasizes on the aforementioned security and challenges.
2021-05-26
Ghosh, Bedatrayee, Parimi, Priyanka, Rout, Rashmi Ranjan.  2020.  Improved Attribute-Based Encryption Scheme in Fog Computing Environment for Healthcare Systems. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.

In today's smart healthcare system, medical records of patients are exposed to a large number of users for various purposes, from monitoring the patients' health to data analysis. Preserving the privacy of a patient has become an important and challenging issue. outsourced Ciphertext-Policy Attribute-Based Encryption (CP-ABE) provides a solution for the data sharing and privacy preservation problem in the healthcare system in fog environment. However, the high computational cost in case of frequent attribute updates renders it infeasible for providing access control in healthcare systems. In this paper, we propose an efficient method to overcome the frequent attribute update problem of outsourced CP-ABE. In our proposed approach, we generate two keys for each user (a static key and a dynamic key) based on the constant and changing attributes of the users. Therefore, in case of an attribute change for a user, only the dynamic key is updated. Also, the key update is done at the fog nodes without compromising the security of the system. Thus, both the communication and the computational overhead associated with the key update in the outsourced CP-ABE scheme are reduced, making it an ideal solution for data access control in healthcare systems. The efficacy of our proposed approach is shown through theoretical analysis and experimentation.

2021-05-25
Alnsour, Rawan, Hamdan, Basil.  2020.  Incorporating SCADA Cybersecurity in Undergraduate Engineering Technology Information Technology Education. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—4.

The purpose of this paper is threefold. First, it makes the case for incorporating cybersecurity principles into undergraduate Engineering Technology Education and for incorporating Industrial Control Systems (ICS) principles into undergraduate Information Technology (IT)/Cybersecurity Education. Specifically, the paper highlights the knowledge/skill gap between engineers and IT/Cybersecurity professionals with respect to the cybersecurity of the ICS. Secondly, it identifies several areas where traditional IT systems and ICS intercept. This interception not only implies that ICS are susceptible to the same cyber threats as traditional IT/IS but also to threats that are unique to ICS. Subsequently, the paper identifies several areas where cybersecurity principles can be applied to ICS. By incorporating cybersecurity principles into Engineering Technology Education, the paper hopes to provide IT/Cybersecurity and Engineering Students with (a) the theoretical knowledge of the cybersecurity issues associated with administering and operating ICS and (b) the applied technical skills necessary to manage and mitigate the cyber risks against these systems. Overall, the paper holds the promise of contributing to the ongoing effort aimed at bridging the knowledge/skill gap with respect to securing ICS against cyber threats and attacks.

Santos, Bernardo, Dzogovic, Bruno, Feng, Boning, Jacot, Niels, Do, Van Thuan, Do, Thanh Van.  2020.  Improving Cellular IoT Security with Identity Federation and Anomaly Detection. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :776—780.

As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices' behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.

2021-05-20
Usher, Will, Pascucci, Valerio.  2020.  Interactive Visualization of Terascale Data in the Browser: Fact or Fiction? 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV). :27—36.

Information visualization applications have become ubiquitous, in no small part thanks to the ease of wide distribution and deployment to users enabled by the web browser. Scientific visualization applications, relying on native code libraries and parallel processing, have been less suited to such widespread distribution, as browsers do not provide the required libraries or compute capabilities. In this paper, we revisit this gap in visualization technologies and explore how new web technologies, WebAssembly and WebGPU, can be used to deploy powerful visualization solutions for large-scale scientific data in the browser. In particular, we evaluate the programming effort required to bring scientific visualization applications to the browser through these technologies and assess their competitiveness against classic native solutions. As a main example, we present a new GPU-driven isosurface extraction method for block-compressed data sets, that is suitable for interactive isosurface computation on large volumes in resource-constrained environments, such as the browser. We conclude that web browsers are on the verge of becoming a competitive platform for even the most demanding scientific visualization tasks, such as interactive visualization of isosurfaces from a 1TB DNS simulation. We call on researchers and developers to consider investing in a community software stack to ease use of these upcoming browser features to bring accessible scientific visualization to the browser.

2021-05-18
Niloy, Nishat Tasnim, Islam, Md. Shariful.  2020.  IntellCache: An Intelligent Web Caching Scheme for Multimedia Contents. 2020 Joint 9th International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision Pattern Recognition (icIVPR). :1–6.
The traditional reactive web caching system is getting less popular day by day due to its inefficiency in handling the overwhelming requests for multimedia content. An intelligent web caching system intends to take optimal cache decisions by predicting future popular contents (FPC) proactively. In recent years, a few approaches have proposed some intelligent caching system where they were concerned about proactive caching. Those works intensified the importance of FPC prediction using the prediction models. However, only FPC prediction may not help to get the optimal solution in every scenario. In this paper, a technique named IntellCache has been proposed that increases the caching efficiency by taking a cache decision i.e. content storing decision before storing the predicted FPC. Different deep learning models such as- multilayer perceptron (MLP), Long short-term memory (LSTM) of Recurrent Neural Network (RNN) and ConvLSTM a combination of LSTM and Convolutional Neural Network (CNN) are compared to identify the most efficient model for FPC. The information on the contents of 18 years from the MovieLens data repository has been mined to evaluate the proposed approach. Results show that this proposed scheme outperforms previous solutions by achieving a higher cache hit ratio and lower average delay and thus, ensures users' satisfaction.
Zhang, Chi, Chen, Jinfu, Cai, Saihua, Liu, Bo, Wu, Yiming, Geng, Ye.  2020.  iTES: Integrated Testing and Evaluation System for Software Vulnerability Detection Methods. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1455–1460.
To find software vulnerabilities using software vulnerability detection technology is an important way to ensure the system security. Existing software vulnerability detection methods have some limitations as they can only play a certain role in some specific situations. To accurately analyze and evaluate the existing vulnerability detection methods, an integrated testing and evaluation system (iTES) is designed and implemented in this paper. The main functions of the iTES are:(1) Vulnerability cases with source codes covering common vulnerability types are collected automatically to form a vulnerability cases library; (2) Fourteen methods including static and dynamic vulnerability detection are evaluated in iTES, involving the Windows and Linux platforms; (3) Furthermore, a set of evaluation metrics is designed, including accuracy, false positive rate, utilization efficiency, time cost and resource cost. The final evaluation and test results of iTES have a good guiding significance for the selection of appropriate software vulnerability detection methods or tools according to the actual situation in practice.
Alresheedi, Mohammed T..  2020.  Improving the Confidentiality of VLC Channels: Physical-Layer Security Approaches. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1–5.
Visible light communication (VLC) is considered as an emerging system for wireless indoor multimedia communications. As any wireless communication system, its channels are open and reachable to both licensed and unlicensed users owing to the broadcast character of visible-light propagation in public areas or multiple-user scenarios. In this work, we consider the physical-layer security approaches for VLC to mitigate this limitation. The physical-layer security approaches can be divided into two categories: keyless security and key-based security approaches. In the last category, recently, the authors introduced physical-layer key-generation approaches for optical orthogonal frequency division multiplexing (OFDM) systems. In these approaches, the cyclic prefix (CP) samples are exploited for key generation. In this paper, we study the effect of the length of key space and order of modulation on the security level, BER performance, and key-disagreement-rate (KDR) of the introduced key-based security approaches. From the results, our approaches are more efficient in higher order of modulation as the KDR decreases with the increase of order of modulation.
2021-05-13
Fei, Wanghao, Moses, Paul, Davis, Chad.  2020.  Identification of Smart Grid Attacks via State Vector Estimator and Support Vector Machine Methods. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—6.

In recent times, an increasing amount of intelligent electronic devices (IEDs) are being deployed to make power systems more reliable and economical. While these technologies are necessary for realizing a cyber-physical infrastructure for future smart power grids, they also introduce new vulnerabilities in the grid to different cyber-attacks. Traditional methods such as state vector estimation (SVE) are not capable of identifying cyber-attacks while the geometric information is also injected as an attack vector. In this paper, a machine learning based smart grid attack identification method is proposed. The proposed method is carried out by first collecting smart grid power flow data for machine learning training purposes which is later used to classify the attacks. The performance of both the proposed SVM method and the traditional SVE method are validated on IEEE 14, 30, 39, 57 and 118 bus systems, and the performance regarding the scale of the power system is evaluated. The results show that the SVM-based method performs better than the SVE-based in attack identification over a much wider scale of power systems.

Bradbury, Matthew, Maple, Carsten, Yuan, Hu, Atmaca, Ugur Ilker, Cannizzaro, Sara.  2020.  Identifying Attack Surfaces in the Evolving Space Industry Using Reference Architectures. 2020 IEEE Aerospace Conference. :1–20.
The space environment is currently undergoing a substantial change and many new entrants to the market are deploying devices, satellites and systems in space; this evolution has been termed as NewSpace. The change is complicated by technological developments such as deploying machine learning based autonomous space systems and the Internet of Space Things (IoST). In the IoST, space systems will rely on satellite-to-x communication and interactions with wider aspects of the ground segment to a greater degree than existing systems. Such developments will inevitably lead to a change in the cyber security threat landscape of space systems. Inevitably, there will be a greater number of attack vectors for adversaries to exploit, and previously infeasible threats can be realised, and thus require mitigation. In this paper, we present a reference architecture (RA) that can be used to abstractly model in situ applications of this new space landscape. The RA specifies high-level system components and their interactions. By instantiating the RA for two scenarios we demonstrate how to analyse the attack surface using attack trees.
Monakhov, Yuri, Monakhov, Mikhail, Telny, Andrey, Mazurok, Dmitry, Kuznetsova, Anna.  2020.  Improving Security of Neural Networks in the Identification Module of Decision Support Systems. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :571–574.
In recent years, neural networks have been implemented while solving various tasks. Deep learning algorithms provide state of the art performance in computer vision, NLP, speech recognition, speaker recognition and many other fields. In spite of the good performance, neural networks have significant drawback- they have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. While being imperceptible to a human eye, such perturbations lead to significant drop in classification accuracy. It is demonstrated by many studies related to neural network security. Considering the pros and cons of neural networks, as well as a variety of their applications, developing of the methods to improve the robustness of neural networks against adversarial attacks becomes an urgent task. In the article authors propose the “minimalistic” attacker model of the decision support system identification unit, adaptive recommendations on security enhancing, and a set of protective methods. Suggested methods allow for significant increase in classification accuracy under adversarial attacks, as it is demonstrated by an experiment outlined in this article.
2021-05-05
Rathod, Jash, Joshi, Chaitali, Khochare, Janavi, Kazi, Faruk.  2020.  Interpreting a Black-Box Model used for SCADA Attack detection in Gas Pipelines Control System. 2020 IEEE 17th India Council International Conference (INDICON). :1—7.
Various Machine Learning techniques are considered to be "black-boxes" because of their limited interpretability and explainability. This cannot be afforded, especially in the domain of Cyber-Physical Systems, where there can be huge losses of infrastructure of industries and Governments. Supervisory Control And Data Acquisition (SCADA) systems need to detect and be protected from cyber-attacks. Thus, we need to adopt approaches that make the system secure, can explain predictions made by model, and interpret the model in a human-understandable format. Recently, Autoencoders have shown great success in attack detection in SCADA systems. Numerous interpretable machine learning techniques are developed to help us explain and interpret models. The work presented here is a novel approach to use techniques like Local Interpretable Model-Agnostic Explanations (LIME) and Layer-wise Relevance Propagation (LRP) for interpretation of Autoencoder networks trained on a Gas Pipelines Control System to detect attacks in the system.
2021-05-03
Zalasiński, Marcin, Cpałka, Krzysztof, Łapa, Krystian.  2020.  An interpretable fuzzy system in the on-line signature scalable verification. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–9.
This paper proposes new original solutions for the use of interpretable flexible fuzzy systems for identity verification based on an on-line signature. Such solutions must be scalable because the verification of the identity of each user must be carried out independently of one another. In addition, a large number of system users limit the possibilities of iterative system learning. An important issue is the ability to interpret the system rules because it explains how the similarity of test signatures to reference signature templates is assessed. In this paper, we propose an approach that meets all of the above requirements and works effectively for the on-line signatures' database used in the simulations.
Chinthavali, M., Starke, M., Moorthy, R..  2020.  An Intelligent Energy Router for Managing Behind-the-Meter Resources and Assets. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
With increase in distributed energy resources (DERs) and smart loads, each energy resource and load need a separate power conversion system leading to complex coordination and interaction, reduced energy conversion efficiency, coordinating compliance to grid standards (IEEE 1547) from multiple sources, reduced security. Also, multiple vendors with legacy system designs and proprietary communications interfaces result in redundancy and increase in cost of power electronics systems. This paper presents an energy router concept for buildings applications which provides autonomous power flow between sources and loads with a novel agent-based software interface.