Guo, T., Zhou, R., Tian, C..
2020.
On the Information Leakage in Private Information Retrieval Systems. IEEE Transactions on Information Forensics and Security. 15:2999—3012.
We consider information leakage to the user in private information retrieval (PIR) systems. Information leakage can be measured in terms of individual message leakage or total leakage. Individual message leakage, or simply individual leakage, is defined as the amount of information that the user can obtain on any individual message that is not being requested, and the total leakage is defined as the amount of information that the user can obtain about all the other messages except the one being requested. In this work, we characterize the tradeoff between the minimum download cost and the individual leakage, and that for the total leakage, respectively. Coding schemes are proposed to achieve these optimal tradeoffs, which are also shown to be optimal in terms of the message size. We further characterize the optimal tradeoff between the minimum amount of common randomness and the total leakage. Moreover, we show that under individual leakage, common randomness is in fact unnecessary when there are more than two messages.
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..
2020.
Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
Igbe, O., Saadawi, T..
2018.
Insider Threat Detection using an Artificial Immune system Algorithm. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :297—302.
Insider threats result from legitimate users abusing their privileges, causing tremendous damage or losses. Malicious insiders can be the main threats to an organization. This paper presents an anomaly detection system for detecting insider threat activities in an organization using an ensemble that consists of negative selection algorithms (NSA). The proposed system classifies a selected user activity into either of two classes: "normal" or "malicious." The effectiveness of our proposed detection system is evaluated using case studies from the computer emergency response team (CERT) synthetic insider threat dataset. Our results show that the proposed method is very effective in detecting insider threats.
Zhang, T., Zhao, P..
2010.
Insider Threat Identification System Model Based on Rough Set Dimensionality Reduction. 2010 Second World Congress on Software Engineering. 2:111—114.
Insider threat makes great damage to the security of information system, traditional security methods are extremely difficult to work. Insider attack identification plays an important role in insider threat detection. Monitoring user's abnormal behavior is an effective method to detect impersonation, this method is applied to insider threat identification, to built user's behavior attribute information database based on weights changeable feedback tree augmented Bayes network, but data is massive, using the dimensionality reduction based on rough set, to establish the process information model of user's behavior attribute. Using the minimum risk Bayes decision can effectively identify the real identity of the user when user's behavior departs from the characteristic model.
Sarma, M. S., Srinivas, Y., Abhiram, M., Ullala, L., Prasanthi, M. S., Rao, J. R..
2017.
Insider Threat Detection with Face Recognition and KNN User Classification. 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). :39—44.
Information Security in cloud storage is a key trepidation with regards to Degree of Trust and Cloud Penetration. Cloud user community needs to ascertain performance and security via QoS. Numerous models have been proposed [2] [3] [6][7] to deal with security concerns. Detection and prevention of insider threats are concerns that also need to be tackled. Since the attacker is aware of sensitive information, threats due to cloud insider is a grave concern. In this paper, we have proposed an authentication mechanism, which performs authentication based on verifying facial features of the cloud user, in addition to username and password, thereby acting as two factor authentication. New QoS has been proposed which is capable of monitoring and detection of insider threats using Machine Learning Techniques. KNN Classification Algorithm has been used to classify users into legitimate, possibly legitimate, possibly not legitimate and not legitimate groups to verify image authenticity to conclude, whether there is any possible insider threat. A threat detection model has also been proposed for insider threats, which utilizes Facial recognition and Monitoring models. Security Method put forth in [6] [7] is honed to include threat detection QoS to earn higher degree of trust from cloud user community. As a recommendation, Threat detection module should be harnessed in private cloud deployments like Defense and Pharma applications. Experimentation has been conducted using open source Machine Learning libraries and results have been attached in this paper.
Claycomb, W. R., Huth, C. L., Phillips, B., Flynn, L., McIntire, D..
2013.
Identifying indicators of insider threats: Insider IT sabotage. 2013 47th International Carnahan Conference on Security Technology (ICCST). :1—5.
This paper describes results of a study seeking to identify observable events related to insider sabotage. We collected information from actual insider threat cases, created chronological timelines of the incidents, identified key points in each timeline such as when attack planning began, measured the time between key events, and looked for specific observable events or patterns that insiders held in common that may indicate insider sabotage is imminent or likely. Such indicators could be used by security experts to potentially identify malicious activity at or before the time of attack. Our process included critical steps such as identifying the point of damage to the organization as well as any malicious events prior to zero hour that enabled the attack but did not immediately cause harm. We found that nearly 71% of the cases we studied had either no observable malicious action prior to attack, or had one that occurred less than one day prior to attack. Most of the events observed prior to attack were behavioral, not technical, especially those occurring earlier in the case timelines. Of the observed technical events prior to attack, nearly one third involved installation of software onto the victim organizations IT systems.
Sarkar, M. Z. I., Ratnarajah, T..
2010.
Information-theoretic security in wireless multicasting. International Conference on Electrical Computer Engineering (ICECE 2010). :53–56.
In this paper, a wireless multicast scenario is considered in which the transmitter sends a common message to a group of client receivers through quasi-static Rayleigh fading channel in the presence of an eavesdropper. The communication between transmitter and each client receiver is said to be secured if the eavesdropper is unable to decode any information. On the basis of an information-theoretic formulation of the confidential communications between transmitter and a group of client receivers, we define the expected secrecy sum-mutual information in terms of secure outage probability and provide a complete characterization of maximum transmission rate at which the eavesdropper is unable to decode any information. Moreover, we find the probability of non-zero secrecy mutual information and present an analytical expression for ergodic secrecy multicast mutual information of the proposed model.
Venkitasubramaniam, P., Yao, J., Pradhan, P..
2015.
Information-Theoretic Security in Stochastic Control Systems. Proceedings of the IEEE. 103:1914–1931.
Infrastructural systems such as the electricity grid, healthcare, and transportation networks today rely increasingly on the joint functioning of networked information systems and physical components, in short, on cyber-physical architectures. Despite tremendous advances in cryptography, physical-layer security and authentication, information attacks, both passive such as eavesdropping, and active such as unauthorized data injection, continue to thwart the reliable functioning of networked systems. In systems with joint cyber-physical functionality, the ability of an adversary to monitor transmitted information or introduce false information can lead to sensitive user data being leaked or result in critical damages to the underlying physical system. This paper investigates two broad challenges in information security in cyber-physical systems (CPSs): preventing retrieval of internal physical system information through monitored external cyber flows, and limiting the modification of physical system functioning through compromised cyber flows. A rigorous analytical framework grounded on information-theoretic security is developed to study these challenges in a general stochastic control system abstraction-a theoretical building block for CPSs-with the objectives of quantifying the fundamental tradeoffs between information security and physical system performance, and through the process, designing provably secure controller policies. Recent results are presented that establish the theoretical basis for the framework, in addition to practical applications in timing analysis of anonymous systems, and demand response systems in a smart electricity grid.
Cao, Z., Deng, H., Lu, L., Duan, X..
2014.
An information-theoretic security metric for future wireless communication systems. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). :1–4.
Quantitative analysis of security properties in wireless communication systems is an important issue; it helps us get a comprehensive view of security and can be used to compare the security performance of different systems. This paper analyzes the security of future wireless communication system from an information-theoretic point of view and proposes an overall security metric. We demonstrate that the proposed metric is more reasonable than some existing metrics and it is highly sensitive to some basic parameters and helpful to do fine-grained tuning of security performance.
Bloch, M., Laneman, J. N..
2009.
Information-spectrum methods for information-theoretic security. 2009 Information Theory and Applications Workshop. :23–28.
We investigate the potential of an information-spectrum approach to information-theoretic security. We show how this approach provides conceptually simple yet powerful results that can be used to investigate complex communication scenarios. In particular, we illustrate the usefulness of information-spectrum methods by analyzing the effect of channel state information (CSI) on the secure rates achievable over wiretap channels. We establish a formula for secrecy capacity, which we then specialize to compute achievable rates for ergodic fading channels in the presence of imperfect CSI. Our results confirm the importance of having some knowledge about the eavesdropper's channel, but also show that imperfect CSI does not necessarily preclude security.
Ayub, M. A., Continella, A., Siraj, A..
2020.
An I/O Request Packet (IRP) Driven Effective Ransomware Detection Scheme using Artificial Neural Network. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :319–324.
In recent times, there has been a global surge of ransomware attacks targeted at industries of various types and sizes from retail to critical infrastructure. Ransomware researchers are constantly coming across new kinds of ransomware samples every day and discovering novel ransomware families out in the wild. To mitigate this ever-growing menace, academia and industry-based security researchers have been utilizing unique ways to defend against this type of cyber-attacks. I/O Request Packet (IRP), a low-level file system I/O log, is a newly found research paradigm for defense against ransomware that is being explored frequently. As such in this study, to learn granular level, actionable insights of ransomware behavior, we analyze the IRP logs of 272 ransomware samples belonging to 18 different ransomware families captured during individual execution. We further our analysis by building an effective Artificial Neural Network (ANN) structure for successful ransomware detection by learning the underlying patterns of the IRP logs. We evaluate the ANN model with three different experimental settings to prove the effectiveness of our approach. The model demonstrates outstanding performance in terms of accuracy, precision score, recall score, and F1 score, i.e., in the range of 99.7%±0.2%.
Xingjie, F., Guogenp, W., ShiBIN, Z., ChenHAO.
2020.
Industrial Control System Intrusion Detection Model based on LSTM Attack Tree. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :255–260.
With the rapid development of the Industrial Internet, the network security risks faced by industrial control systems (ICSs) are becoming more and more intense. How to do a good job in the security protection of industrial control systems is extremely urgent. For traditional network security, industrial control systems have some unique characteristics, which results in traditional intrusion detection systems that cannot be directly reused on it. Aiming at the industrial control system, this paper constructs all attack paths from the hacker's perspective through the attack tree model, and uses the LSTM algorithm to identify and classify the attack behavior, and then further classify the attack event by extracting atomic actions. Finally, through the constructed attack tree model, the results are reversed and predicted. The results show that the model has a good effect on attack recognition, and can effectively analyze the hacker attack path and predict the next attack target.