Visible to the public Biblio

Found 1126 results

Filters: First Letter Of Title is I  [Clear All Filters]
2022-03-14
Obeidat, Nawar, Purdy, Carla.  2021.  Improving Security in SCADA Systems through Model-checking with TLA+. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). :832—835.
In today’s world, Supervisory Control and Data Acquisition (SCADA) networks have many critical tasks, including managing infrastructure such as power, water, and sewage systems, and controlling automated manufacturing and transportation systems. Securing these systems is crucial. Here we describe a project to design security into an example system using formal specifications. Our example system is a component in a cybersecurity testbed at the University of Cincinnati, which was described in previous work. We also show how a design flaw can be discovered and corrected early in the system development process.
Salunke, Sharad, Venkatadri, M., Hashmi, Md. Farukh, Ahuja, Bharti.  2021.  An Implicit Approach for Visual Data: Compression Encryption via Singular Value Decomposition, Multiple Chaos and Beta Function. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—5.
This paper proposes a digital image compression-encryption scheme based on the theory of singular value decomposition, multiple chaos and Beta function, which uses SVD to compress the digital image and utilizes three way protections for encryption viz. logistic and Arnold map along with the beta function. The algorithm has three advantages: First, the compression scheme gives the freedom to a user so that one can select the desired compression level according to the application with the help of singular value. Second, it includes a confusion mechanism wherein the pixel positions of image are scrambled employing Cat Map. The pixel location is shuffled, resulting in a cipher text image that is safe for communication. Third the key is generated with the help of logistic map which is nonlinear and chaotic in nature therefore highly secured. Fourth the beta function used for encryption is symmetric in nature which means the order of its parameters does not change the outcome of the operation, meaning faithful reconstruction of an image. Thus, the algorithm is highly secured and also saving the storage space as well. The experimental results show that the algorithm has the advantages of faithful reconstruction with reasonable PSNR on different singular values.
McQuistin, Stephen, Band, Vivian, Jacob, Dejice, Perkins, Colin.  2021.  Investigating Automatic Code Generation for Network Packet Parsing. 2021 IFIP Networking Conference (IFIP Networking). :1—9.
Use of formal protocol description techniques and code generation can reduce bugs in network packet parsing code. However, such techniques are themselves complex, and don't see wide adoption in the protocol standards development community, where the focus is on consensus building and human-readable specifications. We explore the utility and effectiveness of new techniques for describing protocol data, specifically designed to integrate with the standards development process, and discuss how they can be used to generate code that is safer and more trustworthy, while maintaining correctness and performance.
Mehra, Misha, Paranjape, Jay N., Ribeiro, Vinay J..  2021.  Improving ML Detection of IoT Botnets using Comprehensive Data and Feature Sets. 2021 International Conference on COMmunication Systems NETworkS (COMSNETS). :438—446.
In recent times, the world has seen a tremendous increase in the number of attacks on IoT devices. A majority of these attacks have been botnet attacks, where an army of compromised IoT devices is used to launch DDoS attacks on targeted systems. In this paper, we study how the choice of a dataset and the extracted features determine the performance of a Machine Learning model, given the task of classifying Linux Binaries (ELFs) as being benign or malicious. Our work focuses on Linux systems since embedded Linux is the more popular choice for building today’s IoT devices and systems. We propose using 4 different types of files as the dataset for any ML model. These include system files, IoT application files, IoT botnet files and general malware files. Further, we propose using static, dynamic as well as network features to do the classification task. We show that existing methods leave out one or the other features, or file types and hence, our model outperforms them in terms of accuracy in detecting these files. While enhancing the dataset adds to the robustness of a model, utilizing all 3 types of features decreases the false positive and false negative rates non-trivially. We employ an exhaustive scenario based method for evaluating a ML model and show the importance of including each of the proposed files in a dataset. We also analyze the features and try to explain their importance for a model, using observed trends in different benign and malicious files. We perform feature extraction using the open source Limon sandbox, which prior to this work has been tested only on Ubuntu 14. We installed and configured it for Ubuntu 18, the documentation of which has been shared on Github.
Jin Kang, Hong, Qin Sim, Sheng, Lo, David.  2021.  IoTBox: Sandbox Mining to Prevent Interaction Threats in IoT Systems. 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). :182—193.
Internet of Things (IoT) apps provide great convenience but exposes us to new safety threats. Unlike traditional software systems, threats may emerge from the joint behavior of multiple apps. While prior studies use handcrafted safety and security policies to detect these threats, these policies may not anticipate all usages of the devices and apps in a smart home, causing false alarms. In this study, we propose to use the technique of mining sandboxes for securing an IoT environment. After a set of behaviors are analyzed from a bundle of apps and devices, a sandbox is deployed, which enforces that previously unseen behaviors are disallowed. Hence, the execution of malicious behavior, introduced from software updates or obscured through methods to hinder program analysis, is blocked.While sandbox mining techniques have been proposed for Android apps, we show and discuss why they are insufficient for detecting malicious behavior in a more complex IoT system. We prototype IoTBox to address these limitations. IoTBox explores behavior through a formal model of a smart home. In our empirical evaluation to detect malicious code changes, we find that IoTBox achieves substantially higher precision and recall compared to existing techniques for mining sandboxes.
2022-03-10
Ge, Xin.  2021.  Internet of things device recognition method based on natural language processing and text similarity. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :137—140.
Effective identification of Internet of things devices in cyberspace is of great significance to the protection of Cyberspace Security. However, there are a large number of such devices in cyberspace, which can not be identified by the existing methods of identifying IoT devices because of the lack of key information such as manufacturer name and device name in the response message. Their existence brings hidden danger to Cyberspace Security. In order to identify the IoT devices with missing key information in these response messages, this paper proposes an IoT device identification method, IoTCatcher. IoTCatcher uses HTTP response message and the structure and style characteristics of HTML document, and based on natural language processing technology and text similarity technology, classifies and compares the IoT devices whose response message lacks key information, so as to generate their device finger information. This paper proves that the recognition precision of IoTCatcher is 95.29%, and the recall rate is 91.01%. Compared with the existing methods, the overall performance is improved by 38.83%.
2022-03-09
Kline, Timothy L..  2021.  Improving Domain Generalization in Segmentation Models with Neural Style Transfer. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). :1324—1328.
Generalizing automated medical image segmentation methods to new image domains is inherently difficult. We have previously developed a number of automated segmentation methods that perform at the level of human readers on images acquired under similar conditions to the original training data. We are interested in exploring techniques that will improve model generalization to new imaging domains. In this study we explore a method to limit the inherent bias of these models to intensity and textural information. Using a dataset of 100 T2-weighted MR images with fat-saturation, and 100 T2-weighted MR images without fat-saturation, we explore the use of neural style transfer to induce shape preference and improve model performance on the task of segmenting the kidneys in patients affected by polycystic kidney disease. We find that using neural style transfer images improves the average dice value by 0.2. In addition, visualizing individual network kernel responses highlights a drastic difference in the optimized networks. Biasing models to invoke shape preference is a promising approach to create methods that are more closely aligned with human perception.
Jia, Ning, Gong, Xiaoyi, Zhang, Qiao.  2021.  Improvement of Style Transfer Algorithm based on Neural Network. 2021 International Conference on Computer Engineering and Application (ICCEA). :1—6.
In recent years, the application of style transfer has become more and more widespread. Traditional deep learning-based style transfer networks often have problems such as image distortion, loss of detailed information, partial content disappearance, and transfer errors. The style transfer network based on deep learning that we propose in this article is aimed at dealing with these problems. Our method uses image edge information fusion and semantic segmentation technology to constrain the image structure before and after the migration, so that the converted image maintains structural consistency and integrity. We have verified that this method can successfully suppress image conversion distortion in most scenarios, and can generate good results.
2022-03-08
Choucri, Nazli, Agarwal, Gaurav.  2022.  International Law for Cyber Operations: Networks, Complexity, Transparency. MIT Political Science Network. :1-38.
Policy documents are usually written in text form—word after word, sentence after sentence, page after page, section after section, chapter after chapter—which often masks some of their most critical features. The text form cannot easily show interconnections among elements, identify the relative salience of issues, or represent feedback dynamics, for example. These are “hidden” features that are difficult to situate. This paper presents a computational analysis of Tallinn Manual 2.0 on the International Law Applicable to Cyber Operations, a seminal work in International Law. Tallinn Manual 2.0 is a seminal document for many reasons, including but not limited to, its (a) authoritative focus on cyber operations, (b) foundation in the fundamental legal principles of the international order and (c) direct relevance to theory, practice, and policy in international relations. The results identify the overwhelming dominance of specific Rules, the centrality of select Rules, the Rules with autonomous standing (that is, not connected to the rest of the corpus), and highlight different aspects of Tallinn Manual 2.0, notably situating authority, security of information -- the feedback structure that keeps the pieces together. This study serves as a “proof of concept” for the use of computational logics to enhance our understanding of policy documents.
Choucri, Nazli, Clark, David D..  2019.  International Relations in the Cyber Age: The Co-Evolution Dilemma.
A foundational analysis of the co-evolution of the internet and international relations, examining resultant challenges for individuals, organizations, firms, and states. In our increasingly digital world, data flows define the international landscape as much as the flow of materials and people. How is cyberspace shaping international relations, and how are international relations shaping cyberspace? In this book, Nazli Choucri and David D. Clark offer a foundational analysis of the co-evolution of cyberspace (with the internet at its core) and international relations, examining resultant challenges for individuals, organizations, and states. The authors examine the pervasiveness of power and politics in the digital realm, finding that the internet is evolving much faster than the tools for regulating it. This creates a “co-evolution dilemma”—a new reality in which digital interactions have enabled weaker actors to influence or threaten stronger actors, including the traditional state powers. Choucri and Clark develop a new method for addressing control in the internet age, “control point analysis,” and apply it to a variety of situations, including major actors in the international and digital realms: the United States, China, and Google. In doing so they lay the groundwork for a new international relations theory that reflects the reality in which we live—one in which the international and digital realms are inextricably linked and evolving together.
Kazemi, Arman, Sharifi, Mohammad Mehdi, Laguna, Ann Franchesca, Müller, Franz, Rajaei, Ramin, Olivo, Ricardo, Kämpfe, Thomas, Niemier, Michael, Hu, X. Sharon.  2021.  In-Memory Nearest Neighbor Search with FeFET Multi-Bit Content-Addressable Memories. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :1084—1089.
Nearest neighbor (NN) search is an essential operation in many applications, such as one/few-shot learning and image classification. As such, fast and low-energy hardware support for accurate NN search is highly desirable. Ternary content-addressable memories (TCAMs) have been proposed to accelerate NN search for few-shot learning tasks by implementing \$L\$∞ and Hamming distance metrics, but they cannot achieve software-comparable accuracies. This paper proposes a novel distance function that can be natively evaluated with multi-bit content-addressable memories (MCAMs) based on ferroelectric FETs (Fe-FETs) to perform a single-step, in-memory NN search. Moreover, this approach achieves accuracies comparable to floating-point precision implementations in software for NN classification and one/few-shot learning tasks. As an example, the proposed method achieves a 98.34% accuracy for a 5-way, 5-shot classification task for the Omniglot dataset (only 0.8% lower than software-based implementations) with a 3-bit MCAM. This represents a 13% accuracy improvement over state-of-the-art TCAM-based implementations at iso-energy and iso-delay. The presented distance function is resilient to the effects of FeFET device-to-device variations. Furthermore, this work experimentally demonstrates a 2-bit implementation of FeFET MCAM using AND arrays from GLOBALFOUNDRIES to further validate proof of concept.
2022-03-02
Tang, Fei, Jia, Hao, Shi, Linxin, Zheng, Minghong.  2021.  Information Security Protection of Power System Computer Network. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1226–1229.
With the reform of the power market(PM), various power applications based on computer networks have also developed. As a network application system supporting the operation of the PM, the technical support system(TSS) of the PM has become increasingly important for its network information security(NIS). The purpose of this article is to study the security protection of computer network information in power systems. This paper proposes an identity authentication algorithm based on digital signatures to verify the legitimacy of system user identities; on the basis of PMI, according to the characteristics of PM access control, a role-based access control model with time and space constraints is proposed, and a role-based access control model is designed. The access control algorithm based on the attribute certificate is used to manage the user's authority. Finally, according to the characteristics of the electricity market data, the data security transmission algorithm is designed and the feasibility is verified. This paper presents the supporting platform for the security test and evaluation of the network information system, and designs the subsystem and its architecture of the security situation assessment (TSSA) and prediction, and then designs the key technologies in this process in detail. This paper implements the subsystem of security situation assessment and prediction, and uses this subsystem to combine with other subsystems in the support platform to perform experiments, and finally adopts multiple manifestations, and the trend of the system's security status the graph is presented to users intuitively. Experimental studies have shown that the residual risks in the power system after implementing risk measures in virtual mode can reduce the risk value of the power system to a fairly low level by implementing only three reinforcement schemes.
2022-03-01
Zhao, Hongli, Li, Lili.  2021.  Information Security Architecture Design of CBTC System. 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC). :917–920.
In existing Communication Based Train Control (CBTC) system, information security threats are analyzed, then information security demands of CBTC system are put forward. To protect information security, three security domains are divided according the Safety Integrity Level (SIL)) of CBTC system. Information security architecture of CBTC system is designed, special use firewalls and intrusion detection system are adopted. Through this CBTC system security are enhanced and operation safety is ensured.
Yin, Hoover H. F., Ng, Ka Hei, Zhong, Allen Z., Yeung, Raymond w., Yang, Shenghao.  2021.  Intrablock Interleaving for Batched Network Coding with Blockwise Adaptive Recoding. 2021 IEEE International Symposium on Information Theory (ISIT). :1409–1414.
Batched network coding (BNC) is a low-complexity solution to network transmission in feedbackless multi-hop packet networks with packet loss. BNC encodes the source data into batches of packets. As a network coding scheme, the intermediate nodes perform recoding on the received packets instead of just forwarding them. Blockwise adaptive recoding (BAR) is a recoding strategy which can enhance the throughput and adapt real-time changes in the incoming channel condition. In wireless applications, in order to combat burst packet loss, interleavers can be applied for BNC in a hop-by-hop manner. In particular, a batch-stream interleaver that permutes packets across blocks can be applied with BAR to further boost the throughput. However, the previously proposed minimal communication protocol for BNC only supports permutation of packets within a block, called intrablock interleaving, and so it is not compatible with the batch-stream interleaver. In this paper, we design an intrablock interleaver for BAR that is backward compatible with the aforementioned minimal protocol, so that the throughput can be enhanced without upgrading all the existing devices.
Leevy, Joffrey L., Hancock, John, Khoshgoftaar, Taghi M., Seliya, Naeem.  2021.  IoT Reconnaissance Attack Classification with Random Undersampling and Ensemble Feature Selection. 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC). :41–49.
The exponential increase in the use of Internet of Things (IoT) devices has been accompanied by a spike in cyberattacks on IoT networks. In this research, we investigate the Bot-IoT dataset with a focus on classifying IoT reconnaissance attacks. Reconnaissance attacks are a foundational step in the cyberattack lifecycle. Our contribution is centered on the building of predictive models with the aid of Random Undersampling (RUS) and ensemble Feature Selection Techniques (FSTs). As far as we are aware, this type of experimentation has never been performed for the Reconnaissance attack category of Bot-IoT. Our work uses the Area Under the Receiver Operating Characteristic Curve (AUC) metric to quantify the performance of a diverse range of classifiers: Light GBM, CatBoost, XGBoost, Random Forest (RF), Logistic Regression (LR), Naive Bayes (NB), Decision Tree (DT), and a Multilayer Perceptron (MLP). For this study, we determined that the best learners are DT and DT-based ensemble classifiers, the best RUS ratio is 1:1 or 1:3, and the best ensemble FST is our ``6 Agree'' technique.
Amaran, Sibi, Mohan, R. Madhan.  2021.  Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1100–1104.
Wireless sensor networks (WSN) hold numerous battery operated, compact sized, and inexpensive sensor nodes, which are commonly employed to observe the physical parameters in the target environment. As the sensor nodes undergo arbitrary placement in the open areas, there is a higher possibility of affected by distinct kinds of attacks. For resolving the issue, intrusion detection system (IDS) is developed. This paper presents a new optimal Support Vector Machine (OSVM) based IDS in WSN. The presented OSVM model involves the proficient selection of optimal kernels in the SVM model using whale optimization algorithm (WOA) for intrusion detection. Since the SVM kernel gets altered using WOA, the application of OSVM model can be used for the detection of intrusions with proficient results. The performance of the OSVM model has been investigated on the benchmark NSL KDDCup 99 dataset. The resultant simulation values portrayed the effectual results of the OSVM model by obtaining a superior accuracy of 94.09% and detection rate of 95.02%.
2022-02-25
Xie, Bing, Tan, Zilong, Carns, Philip, Chase, Jeff, Harms, Kevin, Lofstead, Jay, Oral, Sarp, Vazhkudai, Sudharshan S., Wang, Feiyi.  2021.  Interpreting Write Performance of Supercomputer I/O Systems with Regression Models. 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :557—566.

This work seeks to advance the state of the art in HPC I/O performance analysis and interpretation. In particular, we demonstrate effective techniques to: (1) model output performance in the presence of I/O interference from production loads; (2) build features from write patterns and key parameters of the system architecture and configurations; (3) employ suitable machine learning algorithms to improve model accuracy. We train models with five popular regression algorithms and conduct experiments on two distinct production HPC platforms. We find that the lasso and random forest models predict output performance with high accuracy on both of the target systems. We also explore use of the models to guide adaptation in I/O middleware systems, and show potential for improvements of at least 15% from model-guided adaptation on 70% of samples, and improvements up to 10 x on some samples for both of the target systems.

Liu, Xusheng, Deng, Zhidong, Lv, Jingxian, Zhang, Xiaohui, Xu, Yin.  2021.  Intelligent Notification System for Large User Groups. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1213—1216.
With the development of communication technology, the disadvantages of traditional notification methods such as low efficiency gradually appear. With the introduction of WAP with WTLS security and its development and maintenance, more and more notification systems are using this technology. Through the analysis, design and implementation of notification system for large user groups, this paper studies how to collect and notify data without affecting the business system, and proposes a scheme of real-time data acquisition and filtering based on trigger. The middleware and application server implementation transaction management and database operation to separate CICS middleware technology based on research using UNIXC, Socket programming, SQL statements, SYBASE database technology, from the system requirements, business process, function structure, database and data structure, the input and output of the system, system testing the aspects such as design of practical significance to intelligent notification system for large user groups. Finally, the paper describes the test effect of the system in detail. 10 users send 1, 5, 10 and 20 strokes at the same time, and the completion time is 0.28, 1.09, 1.58 and 2.20 seconds, which proves that the system has practical significance.
2022-02-24
Zhou, Andy, Sultana, Kazi Zakia, Samanthula, Bharath K..  2021.  Investigating the Changes in Software Metrics after Vulnerability Is Fixed. 2021 IEEE International Conference on Big Data (Big Data). :5658–5663.
Preventing software vulnerabilities while writing code is one of the most effective ways for avoiding cyber attacks on any developed system. Although developers follow some standard guiding principles for ensuring secure code, the code can still have security bottlenecks and be compromised by an attacker. Therefore, assessing software security while developing code can help developers in writing vulnerability free code. Researchers have already focused on metrics-based and text mining based software vulnerability prediction models. The metrics based models showed higher precision in predicting vulnerabilities although the recall rate is low. In addition, current research did not investigate the impact of individual software metric on the occurrences of vulnerabilities. The main objective of this paper is to track the changes in every software metric after the developer fixes a particular vulnerability. The results of our research will potentially motivate further research on building more accurate vulnerability prediction models based on the appropriate software metrics. In particular, we have compared a total of 250 files from Apache Tomcat and Apache CXF. These files were extracted from the Apache database and were chosen because Apache released these files as vulnerable in their publicly available security advisories. Using a static analysis tool, metrics of the targeted vulnerable files and relevant fixed files (files where vulnerable code is removed by the developers) were extracted and compared. We show that eight of the 40 metrics have an average increase of 2% from vulnerable to fixed files. These metrics include CountDeclClass, CountDeclClassMethod, CountDeclClassVariable, CountDeclInstanceVariable, CountDeclMethodDefault, CountLineCode, MaxCyclomaticStrict, MaxNesting. This study will help developers to assess software security through utilizing software metrics in secure coding practices.
Thirumavalavasethurayar, P, Ravi, T.  2021.  Implementation of Replay Attack in Controller Area Network Bus Using Universal Verification Methodology. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1142–1146.

Controller area network is the serial communication protocol, which broadcasts the message on the CAN bus. The transmitted message is read by all the nodes which shares the CAN bus. The message can be eavesdropped and can be re-used by some other node by changing the information or send it by duplicate times. The message reused after some delay is replay attack. In this paper, the CAN network with three CAN nodes is implemented using the universal verification components and the replay attack is demonstrated by creating the faulty node. Two types of replay attack are implemented in this paper, one is to replay the entire message and the other one is to replay only the part of the frame. The faulty node uses the first replay attack method where it behaves like the other node in the network by duplicating the identifier. CAN frame except the identifier is reused in the second method which is hard to detect the attack as the faulty node uses its own identifier and duplicates only the data in the CAN frame.

Baelde, David, Delaune, Stéphanie, Jacomme, Charlie, Koutsos, Adrien, Moreau, Solène.  2021.  An Interactive Prover for Protocol Verification in the Computational Model. 2021 IEEE Symposium on Security and Privacy (SP). :537–554.
Given the central importance of designing secure protocols, providing solid mathematical foundations and computer-assisted methods to attest for their correctness is becoming crucial. Here, we elaborate on the formal approach introduced by Bana and Comon in [10], [11], which was originally designed to analyze protocols for a fixed number of sessions, and lacks support for proof mechanization.In this paper, we present a framework and an interactive prover allowing to mechanize proofs of security protocols for an arbitrary number of sessions in the computational model. More specifically, we develop a meta-logic as well as a proof system for deriving security properties. Proofs in our system only deal with high-level, symbolic representations of protocol executions, similar to proofs in the symbolic model, but providing security guarantees at the computational level. We have implemented our approach within a new interactive prover, the Squirrel prover, taking as input protocols specified in the applied pi-calculus, and we have performed a number of case studies covering a variety of primitives (hashes, encryption, signatures, Diffie-Hellman exponentiation) and security properties (authentication, strong secrecy, unlinkability).
Yu, Miao, Gligor, Virgil, Jia, Limin.  2021.  An I/O Separation Model for Formal Verification of Kernel Implementations. 2021 IEEE Symposium on Security and Privacy (SP). :572–589.

Commodity I/O hardware often fails to separate I/O transfers of isolated OS and applications code. Even when using the best I/O hardware, commodity systems sometimes trade off separation assurance for increased performance. Remarkably, device firmware need not be malicious. Instead, any malicious driver, even if isolated in its own execution domain, can manipulate its device to breach I/O separation. To prevent such vulnerabilities with high assurance, a formal I/O separation model and its use in automatic generation of secure I/O kernel code is necessary.This paper presents a formal I/O separation model, which defines a separation policy based on authorization of I/O transfers and is hardware agnostic. The model, its refinement, and instantiation in the Wimpy kernel design, are formally specified and verified in Dafny. We then specify the kernel implementation and automatically generate verified-correct assembly code that enforces the I/O separation policies. Our formal modeling enables the discovery of heretofore unknown design and implementation vulnerabilities of the original Wimpy kernel. Finally, we outline how the model can be applied to other I/O kernels and conclude with the key lessons learned.

2022-02-22
Wang, Mingzhe, Liang, Jie, Zhou, Chijin, Chen, Yuanliang, Wu, Zhiyong, Jiang, Yu.  2021.  Industrial Oriented Evaluation of Fuzzing Techniques. 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). :306–317.
Fuzzing is a promising method for discovering vulnerabilities. Recently, various techniques are developed to improve the efficiency of fuzzing, and impressive gains are observed in evaluation results. However, evaluation is complex, as many factors affect the results, for example, test suites, baseline and metrics. Even more, most experiment setups are lab-oriented, lacking industrial settings such as large code-base and parallel runs. The correlation between the academic evaluation results and the bug-finding ability in real industrial settings has not been sufficiently studied. In this paper, we test representative fuzzing techniques to reveal their efficiency in industrial settings. First, we apply typical fuzzers on academic widely used small projects from LAVAM suite. We also apply the same fuzzers on large practical projects from Google's fuzzer-test-suite, which is rarely used in academic settings. Both experiments are performed in both single and parallel run. By analyzing the results, we found that most optimizations working well on LAVA-M suite fail to achieve satisfying results on Google's fuzzer-test-suite (e.g. compared to AFL, QSYM detects 82x more synthesized bugs in LAVA-M, but only detects 26% real bugs in Google's fuzzer-test-suite), and the original AFL even outperforms most academic optimization variants in industry widely used parallel runs (e.g. AFL covers 13% more paths than AFLFast). Then, we summarize common pitfalls of those optimizations, analyze the corresponding root causes, and propose potential directions such as orchestrations and synchronization to overcome the problems. For example, when running in parallel on those large practical projects, the proposed horizontal orchestration could cover 36%-82% more paths, and discover 46%-150% more unique crashes or bugs, compared to fuzzers such as AFL, FairFuzz and QSYM.
Nimer, Lina, Tahat, Ashraf.  2021.  Implementation of a Peer-to-Peer Network Using Blockchain to Manage and Secure Electronic Medical Records. 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :187—192.
An electronic medical record (EMR) is the digital medical data of a patient, and they are healthcare system's most valuable asset. In this paper, we introduce a decentralized network using blockchain technology and smart contracts as a solution to manage and secure medical records storing, and transactions between medical healthcare providers. Ethereum blockchain is employed to build the blockchain. Solidity object-oriented language was utilized to implement smart contracts to digitally facilitate and verify transactions across the network (creating records, access requests, permitting access, revoking access, rejecting access). This will mitigate prevailing issues of current systems and enhance their performance, since current EMRs are stored on a centralized database, which cannot guarantee data integrity and security, consequently making them susceptible to malicious attacks. Our proposed system approach is of vital importance considering that healthcare providers depend on various tests in making a decision about a patient's diagnosis, and the respective plan of treatment they will go through. These tests are not shared with other providers, while data is scattered on various systems, as a consequence of these ensuing scenarios, patients suffer of the resulting care provided. Moreover, blockchain can meliorate the motley serious challenges caused by future use of IoT devices that provide real-time data from patients. Therefore, integrating the two technologies will produce decentralized IoT based healthcare systems.
2022-02-09
Mygdalis, Vasileios, Tefas, Anastasios, Pitas, Ioannis.  2021.  Introducing K-Anonymity Principles to Adversarial Attacks for Privacy Protection in Image Classification Problems. 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP). :1–6.
The network output activation values for a given input can be employed to produce a sorted ranking. Adversarial attacks typically generate the least amount of perturbation required to change the classifier label. In that sense, generated adversarial attack perturbation only affects the output in the 1st sorted ranking position. We argue that meaningful information about the adversarial examples i.e., their original labels, is still encoded in the network output ranking and could potentially be extracted, using rule-based reasoning. To this end, we introduce a novel adversarial attack methodology inspired by the K-anonymity principles, that generates adversarial examples that are not only misclassified, but their output sorted ranking spreads uniformly along K different positions. Any additional perturbation arising from the strength of the proposed objectives, is regularized by a visual similarity-based term. Experimental results denote that the proposed approach achieves the optimization goals inspired by K-anonymity with reduced perturbation as well.