Visible to the public Biblio

Found 388 results

Filters: First Letter Of Title is L  [Clear All Filters]
2021-09-07
Hossain, Md Delwar, Inoue, Hiroyuki, Ochiai, Hideya, FALL, Doudou, Kadobayashi, Youki.  2020.  Long Short-Term Memory-Based Intrusion Detection System for In-Vehicle Controller Area Network Bus. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :10–17.
The Controller Area Network (CAN) bus system works inside connected cars as a central system for communication between electronic control units (ECUs). Despite its central importance, the CAN does not support an authentication mechanism, i.e., CAN messages are broadcast without basic security features. As a result, it is easy for attackers to launch attacks at the CAN bus network system. Attackers can compromise the CAN bus system in several ways: denial of service, fuzzing, spoofing, etc. It is imperative to devise methodologies to protect modern cars against the aforementioned attacks. In this paper, we propose a Long Short-Term Memory (LSTM)-based Intrusion Detection System (IDS) to detect and mitigate the CAN bus network attacks. We first inject attacks at the CAN bus system in a car that we have at our disposal to generate the attack dataset, which we use to test and train our model. Our results demonstrate that our classifier is efficient in detecting the CAN attacks. We achieved a detection accuracy of 99.9949%.
Lenard, Teri, Bolboacă, Roland, Genge, Bela.  2020.  LOKI: A Lightweight Cryptographic Key Distribution Protocol for Controller Area Networks. 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP). :513–519.
The recent advancement in the automotive sector has led to a technological explosion. As a result, the modern car provides a wide range of features supported by state of the art hardware and software. Unfortunately, while this is the case of most major components, in the same vehicle we find dozens of sensors and sub-systems built over legacy hardware and software with limited computational capabilities. This paper presents LOKI, a lightweight cryptographic key distribution scheme applicable in the case of the classical invehicle communication systems. The LOKI protocol stands out compared to already proposed protocols in the literature due to its ability to use only a single broadcast message to initiate the generation of a new cryptographic key across a group of nodes. It's lightweight key derivation algorithm takes advantage of a reverse hash chain traversal algorithm to generate fresh session keys. Experimental results consisting of a laboratory-scale system based on Vector Informatik's CANoe simulation environment demonstrate the effectiveness of the developed methodology and its seamless impact manifested on the network.
2021-08-31
Hu, Hongsheng, Dobbie, Gillian, Salcic, Zoran, Liu, Meng, Zhang, Jianbing, Zhang, Xuyun.  2020.  A Locality Sensitive Hashing Based Approach for Federated Recommender System. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :836–842.
The recommender system is an important application in big data analytics because accurate recommendation items or high-valued suggestions can bring high profit to both commercial companies and customers. To make precise recommendations, a recommender system often needs large and fine-grained data for training. In the current big data era, data often exist in the form of isolated islands, and it is difficult to integrate the data scattered due to privacy security concerns. Moreover, privacy laws and regulations make it harder to share data. Therefore, designing a privacy-preserving recommender system is of paramount importance. Existing privacy-preserving recommender system models mainly adapt cryptography approaches to achieve privacy preservation. However, cryptography approaches have heavy overhead when performing encryption and decryption operations and they lack a good level of flexibility. In this paper, we propose a Locality Sensitive Hashing (LSH) based approach for federated recommender system. Our proposed efficient and scalable federated recommender system can make full use of multiple source data from different data owners while guaranteeing preservation of privacy of contributing parties. Extensive experiments on real-world benchmark datasets show that our approach can achieve both high time efficiency and accuracy under small privacy budgets.
2021-08-18
Al-Aali, Yousuf, Boussakta, Said.  2020.  Lightweight block ciphers for resource-constrained devices. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1—6.
Lightweight cryptography is a new branch of cryptography focused on providing security to resource-constraint devices such as wireless sensor networks (WSN), Radio-Frequency Identification (RFIDs) and other embedded systems. The factors considered in lightweight cryptography are mainly circuit area, memory requirement, processing time, latency, power, and energy consumption. This paper presents a discussion on common lightweight block ciphers in terms of different performance parameters, strength, design trends, limitations, and applications including the National Institute of Science and Technology (NIST) round 1 and 2 candidates. Analysis of these lightweight algorithms has offered an insight into this newly emerging field of cryptography.
Tsavos, Marios, Sklavos, Nicolas, Alexiou, George Ph..  2020.  Lightweight Security Data Streaming, Based on Reconfigurable Logic, for FPGA Platform. 2020 23rd Euromicro Conference on Digital System Design (DSD). :277—280.
Alongside the rapid expansion of Internet of Things (IoT), and network evolution (5G, 6G technologies), comes the need for security of higher level and less hardware demanding modules. New cryptographic systems are developed, in order to satisfy the special needs of security, that have emerged in modern applications. In this paper, a novel lightweight data streaming system, is proposed, which operates in alternative modes. Each one of them, performs efficiently as one of three in total, stream ciphering modules. The operation of the proposed system, is based on reconfigurable logic. It aims at a lower hardware utilization and good performance, at the same time. In addition, in order to have a fair and detailed comparison, a second one design is also integrated and introduced. This one proposes a conventional architecture, consisting of the same three stream ciphering modes, implemented on the same device, as separate operation modules. The FPGA synthesis results prove that the proposed reconfigurable design achieves to minimize the area resources, from 18% to 30%, compared to the conventional one, while maintaining high performance values, for the supported modes.
Pandey, Jai Gopal, Laddha, Ayush, Samaddar, Sashwat Deb.  2020.  A Lightweight VLSI Architecture for RECTANGLE Cipher and its Implementation on an FPGA. 2020 24th International Symposium on VLSI Design and Test (VDAT). :1—6.
Block ciphers are one of the most fundamental building blocks for information and network security. In recent years, the need for lightweight ciphers has dramatically been increased due to their wide use in low-cost cryptosystems, wireless networks and resource-constrained embedded devices including RFIDs, sensor nodes, smart cards etc. In this paper, an efficient lightweight architecture for RECTANGLE block cipher has been proposed. The architecture is suitable for extremely hardware-constrained environments and multiple platforms due to its support of bit-slice technique. The proposed architecture has been synthesized and implemented on Xilinx Virtex-5 xc5vlx110t-1ff1136 field programmable gate array (FPGA) device. Implementation results have been presented and compared with the existing architectures and have shown commensurable performance. Also, an application-specific integrated circuit (ASIC) implementation of the architecture is done on SCL 180 nm CMOS technology where it consumes 2362 gate equivalent (GE).
2021-08-17
Dmitry, Morozov, Elena, Ponomareva.  2020.  Linux Privilege Increase Threat Analysis. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0579—0581.
Today, Linux is one of the main operating systems (OS) used both on desktop computers and various mobile devices. This OS is also widely applied in state and municipal structures, including law enforcement agencies and automated control systems used in the Armed Forces of the Russian Federation. It's worth noting that the process of replacing the Linux OS with domestic protected OSs that use the Linux kernel has now begun. In this regard, the analysis of threats to information security of the Linux OS is highly relevant. In this article, the authors discuss the security problems of Linux OS associated with unauthorized user privileges increase, as a result of which an attacker can gain full control over the OS. The approaches to differentiating user privileges in Linux are analyzed and their advantages and disadvantages are considered. As an example, the causes of the vulnerability CVE-2018-14665 were identified and measures to eliminate it were proposed.
2021-08-02
Gao, Xiaomiao, Du, Wenjie, Liu, Weijiang, Wu, Ruiwen, Zhan, Furui.  2020.  A Lightweight and Efficient Physical Layer Key Generation Mechanism for MANETs. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1010–1015.
Due to the reciprocity of wireless channels, the communication parties can directly extract the shared key from channel. This solution were verified through several schemes. However, in real situations, channel sampling of legitimate transceivers might be impacted by noises and other interferences, which makes the channel states obtained by initiator and responder might be obvious different. The efficiency and even availability of physical layer key generation are thus reduced. In this paper, we propose a lightweight and efficient physical layer key generation scheme, which extract shared secret keys from channel state information (CSI). To improve the key generation process, the discrete cosine transform (DCT) is employed to reduce differences of channel states of legitimate transceivers. Then, these outputs are quantified and encoded through multi-bit adaptive quantization(MAQ) quantizer and gray code to generate binary bit sequence, which can greatly reduce the bit error rate. Moreover, the low density parity check (LDPC) code and universal hashing functions are used to achieve information reconciliation and privacy amplifification. By adding preprocessing methods in the key generation process and using the rich information of CSI, the security of communications can be increased on the basis of improving the key generation rate. To evaluate this scheme, a number of experiments in various real environments are conducted. The experimental results show that the proposed scheme can effificiently generate shared secret keys for nodes and protect their communication.
2021-07-07
Alkhazaali, Ali Haleem, ATA, Oğuz.  2020.  Lightweight fog based solution for privacy-preserving in IoT using blockchain. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–10.
Internet of things (IoT) mainly depends on clouds to process and store their data. Clouds cannot handle the volume and velocity of data generated by IoT. IoT is delay-sensitive and resources limited. Fog computing proposed endorsing the internet of things (IoT) demands. Fog computing extends the cloud computing service to the edge of the network. Fog utilization reduces response time and network overhead while maintaining security aspects. isolation and operating system (OS) dependency achieved by using virtualization. Blockchain proposed to solve the security and privacy of fog computing. Blockchain is a decentralized, immutable ledger. fog computing with blockchain proposed as an IoT infrastructure. Fog computing adopted with lightweight blockchain in this proposed work. This adaptation endorses the IoT demands for low response time with limited resources. This paper explores system applicability. Varies from other papers that focus on one factor such as privacy or security-applicability of the proposed model achieved by concentration different IoT needs and limits. Response time and ram usage with 1000 transactions did not encroach 100s and 300MiB in the proposed model.
Diamanti, Alessio, Vilchez, José Manuel Sanchez, Secci, Stefano.  2020.  LSTM-based radiography for anomaly detection in softwarized infrastructures. 2020 32nd International Teletraffic Congress (ITC 32). :28–36.
Legacy and novel network services are expected to be migrated and designed to be deployed in fully virtualized environments. Starting with 5G, NFV becomes a formally required brick in the specifications, for services integrated within the infrastructure provider networks. This evolution leads to deployment of virtual resources Virtual-Machine (VM)-based, container-based and/or server-less platforms, all calling for a deep virtualization of infrastructure components. Such a network softwarization also unleashes further logical network virtualization, easing multi-layered, multi-actor and multi-access services, so as to be able to fulfill high availability, security, privacy and resilience requirements. However, the derived increased components heterogeneity makes the detection and the characterization of anomalies difficult, hence the relationship between anomaly detection and corresponding reconfiguration of the NFV stack to mitigate anomalies. In this article we propose an unsupervised machine-learning data-driven approach based on Long-Short- Term-Memory (LSTM) autoencoders to detect and characterize anomalies in virtualized networking services. With a radiography visualization, this approach can spot and describe deviations from nominal parameter values of any virtualized network service by means of a lightweight and iterative mean-squared reconstruction error analysis of LSTM-based autoencoders. We implement and validate the proposed methodology through experimental tests on a vIMS proof-of-concept deployed using Kubernetes.
2021-07-02
Yang, Yang, Wang, Ruchuan.  2020.  LBS-based location privacy protection mechanism in augmented reality. 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). :1—6.
With the development of augmented reality(AR) technology and location-based service (LBS) technology, combining AR with LBS will create a new way of life and socializing. In AR, users may consider the privacy and security of data. In LBS, the leakage of user location privacy is an important threat to LBS users. Therefore, it is very important for privacy management of positioning information and user location privacy to avoid loopholes and abuse. In this review, the concepts and principles of AR technology and LBS would be introduced. The existing privacy measurement and privacy protection framework would be analyzed and summarized. Also future research direction of location privacy protection would be discussed.
2021-06-30
Sikarwar, Himani, Nahar, Ankur, Das, Debasis.  2020.  LABVS: Lightweight Authentication and Batch Verification Scheme for Universal Internet of Vehicles (UIoV). 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1—6.
With the rapid technological advancement of the universal internet of vehicles (UIoV), it becomes crucial to ensure safe and secure communication over the network, in an effort to achieve the implementation objective of UIoV effectively. A UIoV is characterized by highly dynamic topology, scalability, and thus vulnerable to various types of security and privacy attacks (i.e., replay attack, impersonation attack, man-in-middle attack, non-repudiation, and modification). Since the components of UIoV are constrained by numerous factors (e.g., low memory devices, low power), which makes UIoV highly susceptible. Therefore, existing schemes to address the privacy and security facets of UIoV exhibit an enormous scope of improvement in terms of time complexity and efficiency. This paper presents a lightweight authentication and batch verification scheme (LABVS) for UIoV using a bilinear map and cryptographic operations (i.e., one-way hash function, concatenation, XOR) to minimize the rate of message loss occurred due to delay in response time as in single message verification scheme. Subsequently, the scheme results in a high level of security and privacy. Moreover, the performance analysis substantiates that LABVS minimizes the computational delay and has better performance in the delay-sensitive network in terms of security and privacy as compared to the existing schemes.
Chen, Jichang, Lu, Zhixiang, Zhu, Xueping.  2020.  A Lightweight Dual Authentication Protocol for the Internet of Vehicles. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :17—22.
With the development of 5G communication technology, the status of the Internet of Vehicles in people's lives is greatly improved in the general trend of intelligent transportation. The combination of vehicles and Radio Frequency Identification (RFID) makes the application prospects of vehicle networking gradually expand. However, the wireless network of the Internet of Vehicles is open and mobile, so it can be easily stolen or tampered with by attackers. Moreover, it will cause serious traffic security problems and even threat people's lives. In this paper, we propose a lightweight authentication protocol for the Internet of Vehicles based on a mobile RFID system and give corresponding security requirements for modeling potential attacks. The protocol is based on the three-party mutual authentication, and uses bit-operated left-cycle shift operations and hetero-oriented operations to generate encrypted data. The simultaneous inclusion of triparty shared key information and random numbers makes the protocol resistant to counterfeit attacks, violent attacks, replay attacks and desynchronization attacks. Finally, a simulation analysis of the security protocol using the ProVerif tool shows that the protocol secures is not accessible to attackers during the data transfer, and achieve the three-party authentication between sensor nodes (SN), vehicle nodes (Veh) and backend servers.
Zhao, Yi, Jia, Xian, An, Dou, Yang, Qingyu.  2020.  LSTM-Based False Data Injection Attack Detection in Smart Grids. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :638—644.
As a typical cyber-physical system, smart grid has attracted growing attention due to the safe and efficient operation. The false data injection attack against energy management system is a new type of cyber-physical attack, which can bypass the bad data detector of the smart grid to influence the results of state estimation directly, causing the energy management system making wrong estimation and thus affects the stable operation of power grid. We transform the false data injection attack detection problem into binary classification problem in this paper, which use the long-term and short-term memory network (LSTM) to construct the detection model. After that, we use the BP algorithm to update neural network parameters and utilize the dropout method to alleviate the overfitting problem and to improve the detection accuracy. Simulation results prove that the LSTM-based detection method can achieve higher detection accuracy comparing with the BPNN-based approach.
2021-06-01
Akand, Tawhida, Islam, Md Jahirul, Kaysir, Md Rejvi.  2020.  Low loss hollow core optical fibers combining lattice and negative curvature structures. 2020 IEEE Region 10 Symposium (TENSYMP). :698—701.
Negative curvature hollow core fibers (NC-HCFs) realize great research attention due to their comparatively low losses with simplified design and fabrication simplicity. Recently, revolver type fibers that combine the NC-HCF and conventional lattice structured photonic crystal fiber (PCF) have opened up a new era in communications due to their low loss, power confinement capacity, and multi-bandwidth applications. In this study, we present a customized optical fiber design that comprises the PCF with the NC-HCF to get lowest confinement loss. Extensive numerical simulations are performed and a noteworthy low loss of 4.47×10-05dB/m at a wavelength of 0.85 μm has been recorded for the designed fiber, which is almost 4600 times lower than annular revolver type fibers. In addition, a conspicuous low loss transmission bandwidth ranging from 0.6 μm to 1.8 μm has found in this study. This may have potential applications in spectroscopy, material processing, chemical and bio-molecular sensing, security, and industry applications.
Naderi, Pooria Taghizadeh, Taghiyareh, Fattaneh.  2020.  LookLike: Similarity-based Trust Prediction in Weighted Sign Networks. 2020 6th International Conference on Web Research (ICWR). :294–298.
Trust network is widely considered to be one of the most important aspects of social networks. It has many applications in the field of recommender systems and opinion formation. Few researchers have addressed the problem of trust/distrust prediction and, it has not yet been established whether the similarity measures can do trust prediction. The present paper aims to validate that similar users have related trust relationships. To predict trust relations between two users, the LookLike algorithm was introduced. Then we used the LookLike algorithm results as new features for supervised classifiers to predict the trust/distrust label. We chose a list of similarity measures to examined our claim on four real-world trust network datasets. The results demonstrated that there is a strong correlation between users' similarity and their opinion on trust networks. Due to the tight relation between trust prediction and truth discovery, we believe that our similarity-based algorithm could be a promising solution in their challenging domains.
2021-05-26
Yang, Wenti, Wang, Ruimiao, Guan, Zhitao, Wu, Longfei, Du, Xiaojiang, Guizani, Mohsen.  2020.  A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of Things. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.

The Internet of Things technology has been used in a wide range of fields, ranging from industrial applications to individual lives. As a result, a massive amount of sensitive data is generated and transmitted by IoT devices. Those data may be accessed by a large number of complex users. Therefore, it is necessary to adopt an encryption scheme with access control to achieve more flexible and secure access to sensitive data. The Ciphertext Policy Attribute-Based Encryption (CP-ABE) can achieve access control while encrypting data can match the requirements mentioned above. However, the long ciphertext and the slow decryption operation makes it difficult to be used in most IoT devices which have limited memory size and computing capability. This paper proposes a modified CP-ABE scheme, which can implement the full security (adaptive security) under the access structure of AND gate. Moreover, the decryption overhead and the length of ciphertext are constant. Finally, the analysis and experiments prove the feasibility of our scheme.

2021-05-18
Shen, Chao.  2020.  Laser-based high bit-rate visible light communications and underwater optical wireless network. 2020 Photonics North (PN). :1–1.
This talk presents an overview of the latest visible light communication (VLC) and underwater wireless optical communication (UWOC) research and development from the device to the system level. The utilization of laser-based devices and systems for LiFi and underwater Internet of Things (IoT) has been discussed.
2021-05-13
Huo, Dongdong, Wang, Yu, Liu, Chao, Li, Mingxuan, Wang, Yazhe, Xu, Zhen.  2020.  LAPE: A Lightweight Attestation of Program Execution Scheme for Bare-Metal Systems. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :78—86.

Unlike traditional processors, Internet of Things (IoT) devices are short of resources to incorporate mature protections (e.g. MMU, TrustZone) against modern control-flow attacks. Remote (control-flow) attestation is fast becoming a key instrument in securing such devices as it has proven the effectiveness on not only detecting runtime malware infestation of a remote device, but also saving the computing resources by moving the costly verification process away. However, few control-flow attestation schemes have been able to draw on any systematic research into the software specificity of bare-metal systems, which are widely deployed on resource-constrained IoT devices. To our knowledge, the unique design patterns of the system limit implementations of such expositions. In this paper, we present the design and proof-of-concept implementation of LAPE, a lightweight attestation of program execution scheme that enables detecting control-flow attacks for bare-metal systems without requiring hardware modification. With rudimentary memory protection support found in modern IoT-class microcontrollers, LAPE leverages software instrumentation to compartmentalize the firmware functions into several ”attestation compartments”. It then continuously tracks the control-flow events of each compartment and periodically reports them to the verifier. The PoC of the scheme is incorporated into an LLVM-based compiler to generate the LAPE-enabled firmware. By taking experiments with several real-world IoT firmware, the results show both the efficiency and practicality of LAPE.

Arias, Orlando, Sullivan, Dean, Shan, Haoqi, Jin, Yier.  2020.  LAHEL: Lightweight Attestation Hardening Embedded Devices using Macrocells. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :305—315.

In recent years, we have seen an advent in software attestation defenses targeting embedded systems which aim to detect tampering with a device's running program. With a persistent threat of an increasingly powerful attacker with physical access to the device, attestation approaches have become more rooted into the device's hardware with some approaches even changing the underlying microarchitecture. These drastic changes to the hardware make the proposed defenses hard to apply to new systems. In this paper, we present and evaluate LAHEL as the means to study the implementation and pitfalls of a hardware-based attestation mechanism. We limit LAHEL to utilize existing technologies without demanding any hardware changes. We implement LAHEL as a hardware IP core which interfaces with the CoreSight Debug Architecture available in modern ARM cores. We show how LAHEL can be integrated to system on chip designs allowing for microcontroller vendors to easily add our defense into their products. We present and test our prototype on a Zynq-7000 SoC, evaluating the security of LAHEL against powerful time-of-check-time-of-use (TOCTOU) attacks, while demonstrating improved performance over existing attestation schemes.

Liu, Xinghua, Bai, Dandan, Jiang, Rui.  2020.  Load Frequency Control of Multi-area Power Systems under Deception Attacks*. 2020 Chinese Automation Congress (CAC). :3851–3856.
This paper investigated the sliding mode load frequency control (LFC) for an multi-area power system (MPS) under deception attacks (DA). A Luenberger observer is designed to obtain the state estimate of MPS. By using the Lyapunov-Krasovskii method, a sliding mode surface (SMS) is designed to ensure the stability. Then the accessibility analysis ensures that the trajectory of the MPS can reach the specified SMS. Finally, the serviceability of the method is explained by providing a case study.
2021-05-03
Wu, Shanglun, Yuan, Yujie, Kar, Pushpendu.  2020.  Lightweight Verification and Fine-grained Access Control in Named Data Networking Based on Schnorr Signature and Hash Functions. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1561–1566.
Named Data Networking (NDN) is a new kind of architecture for future Internet, which is exactly satisfied with the rapidly increasing mobile requirement and information-depended applications that dominate today's Internet. However, the current verification-data accessed system is not safe enough to prevent data leakage because no strongly method to resist any device or user to access it. We bring up a lightweight verification based on hash functions and a fine-grained access control based on Schnorr Signature to address the issue seamlessly. The proposed scheme is scalable and protect data confidentiality in a NDN network.
2021-04-27
Calzavara, S., Focardi, R., Grimm, N., Maffei, M., Tempesta, M..  2020.  Language-Based Web Session Integrity. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :107—122.
Session management is a fundamental component of web applications: despite the apparent simplicity, correctly implementing web sessions is extremely tricky, as witnessed by the large number of existing attacks. This motivated the design of formal methods to rigorously reason about web session security which, however, are not supported at present by suitable automated verification techniques. In this paper we introduce the first security type system that enforces session security on a core model of web applications, focusing in particular on server-side code. We showcase the expressiveness of our type system by analyzing the session management logic of HotCRP, Moodle, and phpMyAdmin, unveiling novel security flaws that have been acknowledged by software developers.
2021-04-09
Soni, G., Sudhakar, R..  2020.  A L-IDS against Dropping Attack to Secure and Improve RPL Performance in WSN Aided IoT. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :377—383.

In the Internet of Things (IoT), it is feasible to interconnect networks of different devices and all these different devices, such as smartphones, sensor devices, and vehicles, are controlled according to a particular user. These different devices are delivered and accept the information on the network. This thing is to motivate us to do work on IoT and the devices used are sensor nodes. The validation of data delivery completely depends on the checks of count data forwarding in each node. In this research, we propose the Link Hop Value-based Intrusion Detection System (L-IDS) against the blackhole attack in the IoT with the assist of WSN. The sensor nodes are connected to other nodes through the wireless link and exchange data routing, as well as data packets. The LHV value is identified as the attacker's presence by integrating the data delivery in each hop. The LHV is always equivalent to the Actual Value (AV). The RPL routing protocol is used IPv6 to address the concept of routing. The Routing procedure is interrupted by an attacker by creating routing loops. The performance of the proposed L-IDS is compared to the RPL routing security scheme based on existing trust. The proposed L-IDS procedure is validating the presence of the attacker at every source to destination data delivery. and also disables the presence of the attacker in the network. Network performance provides better results in the existence of a security scheme and also fully represents the inoperative presence of black hole attackers in the network. Performance metrics show better results in the presence of expected IDS and improve network reliability.

2021-03-29
Olaimat, M. Al, Lee, D., Kim, Y., Kim, J., Kim, J..  2020.  A Learning-based Data Augmentation for Network Anomaly Detection. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–10.
While machine learning technologies have been remarkably advanced over the past several years, one of the fundamental requirements for the success of learning-based approaches would be the availability of high-quality data that thoroughly represent individual classes in a problem space. Unfortunately, it is not uncommon to observe a significant degree of class imbalance with only a few instances for minority classes in many datasets, including network traffic traces highly skewed toward a large number of normal connections while very small in quantity for attack instances. A well-known approach to addressing the class imbalance problem is data augmentation that generates synthetic instances belonging to minority classes. However, traditional statistical techniques may be limited since the extended data through statistical sampling should have the same density as original data instances with a minor degree of variation. This paper takes a learning-based approach to data augmentation to enable effective network anomaly detection. One of the critical challenges for the learning-based approach is the mode collapse problem resulting in a limited diversity of samples, which was also observed from our preliminary experimental result. To this end, we present a novel "Divide-Augment-Combine" (DAC) strategy, which groups the instances based on their characteristics and augments data on a group basis to represent a subset independently using a generative adversarial model. Our experimental results conducted with two recently collected public network datasets (UNSW-NB15 and IDS-2017) show that the proposed technique enhances performances up to 21.5% for identifying network anomalies.