Biblio
This paper presents implementation results of several side channel countermeasures for protecting the scalar multiplication of ECC (Elliptic Curve Cryptography) implemented on an ARM Cortex M3 processor that is used in security sensitive wireless sensor nodes. Our implementation was done for the ECC curves P-256, brainpool256r1, and Ed25519. Investigated countermeasures include Double-And-Add Always, Montgomery Ladder, Scalar Randomization, Randomized Scalar Splitting, Coordinate Randomization, and Randomized Sliding Window. Practical side channel tests for SEMA (Simple Electromagnetic Analysis) and MESD (Multiple Exponent, Single Data) are included. Though more advanced side channel attacks are not evaluated, yet, our results show that an appropriate level of resistance against the most relevant attacks can be reached.
In this paper we analyse possibilities of application of post-quantum code based signature schemes for message authentication purposes. An error-correcting code based digital signature algorithm is presented. There also shown results of computer simulation for this algorithm in case of Reed-Solomon codes and the estimated efficiency of its software implementation. We consider perspectives of error-correcting codes for message authentication and outline further research directions.
Phishing is a form of online identity theft that deceives unaware users into disclosing their confidential information. While significant effort has been devoted to the mitigation of phishing attacks, much less is known about the entire life-cycle of these attacks in the wild, which constitutes, however, a main step toward devising comprehensive anti-phishing techniques. In this paper, we present a novel approach to sandbox live phishing kits that completely protects the privacy of victims. By using this technique, we perform a comprehensive real-world assessment of phishing attacks, their mechanisms, and the behavior of the criminals, their victims, and the security community involved in the process – based on data collected over a period of five months. Our infrastructure allowed us to draw the first comprehensive picture of a phishing attack, from the time in which the attacker installs and tests the phishing pages on a compromised host, until the last interaction with real victims and with security researchers. Our study presents accurate measurements of the duration and effectiveness of this popular threat, and discusses many new and interesting aspects we observed by monitoring hundreds of phishing campaigns.
This work deals with key generation based on Physically Obfuscated Keys (POKs), i.e., a certain type of tamper-evident Physical Unclonable Function (PUF) that can be used as protection against invasive physical attacks. To design a protected device, one must take attacks such as probing of data lines or penetration of the physical security boundary into consideration. For the implementation of a POK as a countermeasure, physical properties of a material – which covers all parts to be protected – are measured. After measuring these properties, i.e. analog values, they have to be quantized in order to derive a cryptographic key. This paper will present and discuss the impact of the quantization method with regard to three parameters: key quality, tamper-sensitivity, and reliability. Our contribution is the analysis of two different quantization schemes considering these parameters. Foremost, we propose a new approach to achieve improved tamper-sensitivity in the worst-case with no information leakage. We then analyze a previous solution and compare it to our scenario. Based on empirical data we demonstrate the advantages of our approach. This significantly improves the level of protection of a tamper-resistant cryptographic device compared to cases not benefiting from our scheme.
Devices in the internet of things (IoT) are frequently (i) resource-constrained, and (ii) deployed in unmonitored, physically unsecured environments. Securing these devices requires tractable cryptographic protocols, as well as cost effective tamper resistance solutions. We propose and evaluate cryptographic protocols that leverage physical unclonable functions (PUFs): circuits whose input to output mapping depends on the unique characteristics of the physical hardware on which it is executed. PUF-based protocols have the benefit of minimizing private key exposure, as well as providing cost-effective tamper resistance. We present and experimentally evaluate an elliptic curve based variant of a theoretical PUF-based authentication protocol proposed previously in the literature. Our work improves over an existing proof-of-concept implementation, which relied on the discrete logarithm problem as proposed in the original work. In contrast, our construction uses elliptic curve cryptography, which substantially reduces the computational and storage burden on the device. We describe PUF-based algorithms for device enrollment, authentication, decryption, and digital signature generation. The performance of each construction is experimentally evaluated on a resource-constrained device to demonstrate tractability in the IoT domain. We demonstrate that our implementation achieves practical performance results, while also providing realistic security. Our work demonstrates that PUF-based protocols may be practically and securely deployed on low-cost resource-constrained IoT devices.
Data sharing is a significant functionality in cloud storage. These cloud storage provider are answerable for keeping the data obtainable and available in addition to the physical environment protected and running. Here we can securely, efficiently, and flexibly share data with others in cloud storage. A new public-key cryptosystems is planned which create constant-size cipher texts such that efficient allocation of decryption rights for any set of cipher texts are achievable. The uniqueness means that one can aggregate any set of secret keys and make them as packed in as a single key, but encircling the power of all the keys being aggregated. This packed in aggregate key can be easily sent to others or be stored in a smart card with very restricted secure storage. In KAC, users encrypt a file with single key, that means every file have each file, also there will be aggregate keys for two or more files, which formed by using the tree structure. Through this, the user can share more files with a single key at a time.
Similar to criminals in the physical world, cyber-criminals use a variety of illegal and immoral means to achieve monetary gains. Recently, malware known as ransomware started to leverage strong cryptographic primitives to hold victims' computer files "hostage" until a ransom is paid. Victims, with no way to defend themselves, are often advised to simply pay. Existing defenses against ransomware rely on ad-hoc mitigations that target the incorrect use of cryptography rather than generic live protection. To fill this gap in the defender's arsenal, we describe the approach, prototype implementation, and evaluation of a novel, automated, and most importantly proactive defense mechanism against ransomware. Our prototype, called PayBreak, effectively combats ransomware, and keeps victims' files safe. PayBreak is based on the insight that secure file encryption relies on hybrid encryption where symmetric session keys are used on the victim computer. PayBreak observes the use of these keys, holds them in escrow, and thus, can decrypt files that would otherwise only be recoverable by paying the ransom. Our prototype leverages low overhead dynamic hooking techniques and asymmetric encryption to realize the key escrow mechanism which allows victims to restore the files encrypted by ransomware. We evaluated PayBreak for its effectiveness against twenty hugely successful families of real-world ransomware, and demonstrate that our system can restore all files that are encrypted by samples from twelve of these families, including the infamous CryptoLocker, and more recent threats such as Locky and SamSam. Finally, PayBreak performs its protection task at negligible performance overhead for common office workloads and is thus ideally suited as a proactive online protection system.
Domain Name System (DNS) had been recognized as an indispensable and fundamental infrastructure of current Internet. However, due to the original design philosophy and easy access principle, one can conveniently wiretap the DNS requests and responses. Such phenomenon is a serious threat for user privacy protection especially when an inside hacking takes place. Motivated by such circumstances, we proposed a ports distribution management solution to relieve the potential information leakage inside local DNS. Users will be able to utilize pre-assigned port numbers instead of default port 53. Selection method of port numbers at the server side and interactive process with corresponding end host are investigated. The necessary implementation steps, including modifications of destination port field, extension option usage, etc., are also discussed. A mathematical model is presented to further evaluate the performance. Both the possible blocking probability and port utilization are illustrated. We expect that this solution will be beneficial not only for the users in security enhancement, but also for the DNS servers in resources optimization.
Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates - i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.
The Internet of Things (IoT) systems are designed and developed either as standalone applications from the ground-up or with the help of IoT middleware platforms. They are designed to support different kinds of scenarios, such as smart homes and smart cities. Thus far, privacy concerns have not been explicitly considered by IoT applications and middleware platforms. This is partly due to the lack of systematic methods for designing privacy that can guide the software development process in IoT. In this paper, we propose a set of guidelines, a privacy by-design framework, that can be used to assess privacy capabilities and gaps of existing IoT applications as well as middleware platforms. We have evaluated two open source IoT middleware platforms, namely OpenIoT and Eclipse SmartHome, to demonstrate how our framework can be used in this way.
The lifelogging activity enables a user, the lifelogger, to passively capture multimodal records from a first-person perspective and ultimately create a visual diary encompassing every possible aspect of her life with unprecedented details. In recent years it has gained popularity among different groups of users. However, the possibility of ubiquitous presence of lifelogging devices especially in private spheres has raised serious concerns with respect to personal privacy. Different practitioners and active researchers in the field of lifelogging have analysed the issue of privacy in lifelogging and proposed different mitigation strategies. However, none of the existing works has considered a well-defined privacy threat model in the domain of lifelogging. Without a proper threat model, any analysis and discussion of privacy threats in lifelogging remains incomplete. In this paper we aim to fill in this gap by introducing a first-ever privacy threat model identifying several threats with respect to lifelogging. We believe that the introduced threat model will be an essential tool and will act as the basis for any further research within this domain.
Chang-Chen-Wang's (3,n) Secret grayscale image Sharing between n grayscale cover images method with participant Authentication and damaged pixels Repairing (SSAR) properties is analyzed; it restores the secret image from any three of the cover images used. We show that SSAR may fail, is not able fake participant recognizing, and has limited by 62.5% repairing ability. We propose SSAR (4,n) enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel using any four of n covers, and recognizing a fake participant with the help of cryptographic hash functions with 5-bit values that allows better (vs. 4 bits) error detection. Using a special permutation with only one loop including all the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels having just one correct pixel left. SSAR-E allows restoring the secret image to authorized parties only contrary to SSAR. The performance and size of cover images for SSAR-E are the same as for SSAR.
Smart grid, managed by intelligent devices, have demonstrated great potentials to help residential customers to optimally schedule and manage the appliances' energy consumption. Due to the fine-grained power consumption information collected by smart meter, the customers' privacy becomes a serious concern. Combined with the effects of fake guideline electricity price, this paper focuses an on-line appliance scheduling design to protect customers' privacy in a cost-effective way, while taking into account the influences of non-schedulable appliances' operation uncertainties. We formulate the problem by minimizing the expected sum of electricity cost and achieving acceptable privacy protection. Without knowledge of future electricity consumptions, an on-line scheduling algorithm is proposed based on the only current observations by using a stochastic dynamic programming technique. The simulation results demonstrate the effectiveness of the proposed algorithm using real-world data.
In March 2016, several online news media reported on the inadequate emotional capabilities of interactive virtual assistants. While significant progress has been made in the general intelligence and functionality of virtual agents (VA), the emotional intelligent (EI) VA has yet been thoroughly explored. We examine user's perception of EI of virtual agents through Zara The Supergirl, a virtual agent that conducts question and answering type of conversational testing and counseling online. The results show that overall users perceive an emotion-expressing VA (EEVA) to be more EI than a non-emotion-expressing VA (NEEVA). However, simple affective expression may not be sufficient enough for EEVA to be perceived as fully EI.
The collaborative nature of content development has given rise to the novel problem of multiple ownership in access control, such that a shared resource is administrated simultaneously by co-owners who may have conflicting privacy preferences and/or sharing needs. Prior work has focused on the design of unsupervised conflict resolution mechanisms. Driven by the need for human consent in organizational settings, this paper explores interactive policy negotiation, an approach complementary to that of prior work. Specifically, we propose an extension of Relationship-Based Access Control (ReBAC) to support multiple ownership, in which a policy negotiation protocol is in place for co-owners to come up with and give consent to an access control policy in a structured manner. During negotiation, the draft policy is assessed by formally defined availability criteria: to the second level of the polynomial hierarchy. We devised two algorithms for verifying policy satisfiability, both employing a modern SAT solver for solving subproblems. The performance is found to be adequate for mid-sized organizations.
With data becoming available in larger quantities and at higher rates, new data processing paradigms have been proposed to handle high-volume, fast-moving data. Data Stream Processing is one such paradigm wherein transient data streams flow through sets of continuous queries, only returning results when data is of interest to the querier. To avoid the large costs associated with maintaining the infrastructure required for processing these data streams, many companies will outsource their computation to third-party cloud services. This outsourcing, however, can lead to private data being accessed by parties that a data provider may not trust. The literature offers solutions to this confidentiality and access control problem but they have fallen short of providing a complete solution to these problems, due to either immense overheads or trust requirements placed on these third-party services. To address these issues, we have developed PolyStream, an enhancement to existing data stream management systems that enables data providers to specify attribute-based access control policies that are cryptographically enforced while simultaneously allowing many types of in-network data processing. We detail the access control models and mechanisms used by PolyStream, and describe a novel use of security punctuations that enables flexible, online policy management and key distribution. We detail how queries are submitted and executed using an unmodified Data Stream Management System, and show through an extensive evaluation that PolyStream yields a 550x performance gain versus the state-of-the-art system StreamForce in CODASPY 2014, while providing greater functionality to the querier.
In cloud computing, computationally weak users are always willing to outsource costly computations to a cloud, and at the same time they need to check the correctness of the result provided by the cloud. Such activities motivate the occurrence of verifiable computation (VC). Recently, Parno, Raykova and Vaikuntanathan showed any VC protocol can be constructed from an attribute-based encryption (ABE) scheme for a same class of functions. In this paper, we propose two practical and efficient semi-adaptively secure key-policy attribute-based encryption (KP-ABE) schemes with constant-size ciphertexts. The semi-adaptive security requires that the adversary designates the challenge attribute set after it receives public parameters but before it issues any secret key query, which is stronger than selective security guarantee. Our first construction deals with small universe while the second one supports large universe. Both constructions employ the technique underlying the prime-order instantiation of nested dual system groups, which are based on the \$d\$-linear assumption including SXDH and DLIN assumptions. In order to evaluate the performance, we implement our ABE schemes using \$\textbackslashtextsf\Python\\$ language in Charm. Compared with previous KP-ABE schemes with constant-size ciphertexts, our constructions achieve shorter ciphertext and secret key sizes, and require low computation costs, especially under the SXDH assumption.
As DNS packet are mostly UDP-based, make it as a perfect tool for hackers to launch a well-known type of distributed denial of service (DDoS). The purpose of this attack is to saturate the DNS server availability and resources. This type of attack usually utilizes a large number of botnet and perform spoofing on the IP address of the targeted victim. We take a different approach for IP spoofing detection and mitigation strategies to protect the DNS server by utilizing Software Defined Networking (SDN). In this paper, we present CAuth, a novel mechanism that autonomously block the spoofing query packet while authenticate the legitimate query. By manipulating Openflow control message, we design a collaborative approach between client and server network. Whenever a server controller receives query packet, it will send an authentication packet back to the client network and later the client controller also replies via authentication packet back to the server controller. The server controller will only forward the query to the DNS server if it receives the replied authentication packet from the client. From the evaluation, CAuth instantly manage to block spoofing query packet while authenticate the legitimate query as soon as the mechanism started. Most notably, our mechanism designed with no changes in existing DNS application and Openflow protocol.