Visible to the public Biblio

Found 286 results

Filters: First Letter Of Title is U  [Clear All Filters]
2021-03-29
Naik, N., Jenkins, P..  2020.  uPort Open-Source Identity Management System: An Assessment of Self-Sovereign Identity and User-Centric Data Platform Built on Blockchain. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—7.

Managing identity across an ever-growing digital services landscape has become one of the most challenging tasks for security experts. Over the years, several Identity Management (IDM) systems were introduced and adopted to tackle with the growing demand of an identity. In this series, a recently emerging IDM system is Self-Sovereign Identity (SSI) which offers greater control and access to users regarding their identity. This distinctive feature of the SSI IDM system represents a major development towards the availability of sovereign identity to users. uPort is an emerging open-source identity management system providing sovereign identity to users, organisations, and other entities. As an emerging identity management system, it requires meticulous analysis of its architecture, working, operational services, efficiency, advantages and limitations. Therefore, this paper contributes towards achieving all of these objectives. Firstly, it presents the architecture and working of the uPort identity management system. Secondly, it develops a Decentralized Application (DApp) to demonstrate and evaluate its operational services and efficiency. Finally, based on the developed DApp and experimental analysis, it presents the advantages and limitations of the uPort identity management system.

Malek, Z. S., Trivedi, B., Shah, A..  2020.  User behavior Pattern -Signature based Intrusion Detection. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :549—552.

Technology advancement also increases the risk of a computer's security. As we can have various mechanisms to ensure safety but still there have flaws. The main concerned area is user authentication. For authentication, various biometric applications are used but once authentication is done in the begging there was no guarantee that the computer system is used by the authentic user or not. The intrusion detection system (IDS) is a particular procedure that is used to identify intruders by analyzing user behavior in the system after the user logged in. Host-based IDS monitors user behavior in the computer and identify user suspicious behavior as an intrusion or normal behavior. This paper discusses how an expert system detects intrusions using a set of rules as a pattern recognized engine. We propose a PIDE (Pattern Based Intrusion Detection) model, which is verified previously implemented SBID (Statistical Based Intrusion Detection) model. Experiment results indicate that integration of SBID and PBID approach provides an extensive system to detect intrusion.

2021-03-18
Dylan Wang, Melody Moh, Teng-Sheng Moh.  2020.  Using Deep Learning to Solve Google reCAPTCHA v2’s Image Challenges.

The most popular CAPTCHA service in use today is Google reCAPTCHA v2, whose main offering is an image-based CAPTCHA challenge. This paper looks into the security measures used in reCAPTCHA v2's image challenges and proposes a deep learning-based solution that can be used to automatically solve them. The proposed method is tested with both a custom object- detection deep learning model as well as Google's own Cloud Vision API, in conjunction with human mimicking mouse movements to bypass the challenges. The paper also suggests some potential defense measures to increase overall security and other additional attack directions for reCAPTCHA v2.

2021-02-23
Al-Emadi, S., Al-Mohannadi, A., Al-Senaid, F..  2020.  Using Deep Learning Techniques for Network Intrusion Detection. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :171—176.
In recent years, there has been a significant increase in network intrusion attacks which raises a great concern from the privacy and security aspects. Due to the advancement of the technology, cyber-security attacks are becoming very complex such that the current detection systems are not sufficient enough to address this issue. Therefore, an implementation of an intelligent and effective network intrusion detection system would be crucial to solve this problem. In this paper, we use deep learning techniques, namely, Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to design an intelligent detection system which is able to detect different network intrusions. Additionally, we evaluate the performance of the proposed solution using different evaluation matrices and we present a comparison between the results of our proposed solution to find the best model for the network intrusion detection system.
2021-02-15
Drakopoulos, G., Giotopoulos, K., Giannoukou, I., Sioutas, S..  2020.  Unsupervised Discovery Of Semantically Aware Communities With Tensor Kruskal Decomposition: A Case Study In Twitter. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA. :1–8.
Substantial empirical evidence, including the success of synthetic graph generation models as well as of analytical methodologies, suggests that large, real graphs have a recursive community structure. The latter results, in part at least, in other important properties of these graphs such as low diameter, high clustering coefficient values, heavy degree distribution tail, and clustered graph spectrum. Notice that this structure need not be official or moderated like Facebook groups, but it can also take an ad hoc and unofficial form depending on the functionality of the social network under study as for instance the follow relationship on Twitter or the connections between news aggregators on Reddit. Community discovery is paramount in numerous applications such as political campaigns, digital marketing, crowdfunding, and fact checking. Here a tensor representation for Twitter subgraphs is proposed which takes into consideration both the followfollower relationships but also the coherency in hashtags. Community structure discovery then reduces to the computation of Tucker tensor decomposition, a higher order counterpart of the well-known unsupervised learning method of singular value decomposition (SVD). Tucker decomposition clearly outperforms the SVD in terms of finding a more compact community size distribution in experiments done in Julia on a Twitter subgraph. This can be attributed to the facts that the proposed methodology combines both structural and functional Twitter elements and that hashtags carry an increased semantic weight in comparison to ordinary tweets.
Uzhga-Rebrov, O., Kuleshova, G..  2020.  Using Singular Value Decomposition to Reduce Dimensionality of Initial Data Set. 2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). :1–4.
The purpose of any data analysis is to extract essential information implicitly present in the data. To do this, it often seems necessary to transform the initial data into a form that allows one to identify and interpret the essential features of their structure. One of the most important tasks of data analysis is to reduce the dimension of the original data. The paper considers an approach to solving this problem based on singular value decomposition (SVD).
2021-02-08
Srivastava, V., Pathak, R. K., Kumar, A., Prakash, S..  2020.  Using a Blend of Brassard and Benett 84 Elliptic Curve Digital Signature for Secure Cloud Data Communication. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :738–743.

The exchange of data has expanded utilizing the web nowadays, but it is not dependable because, during communication on the cloud, any malicious client can alter or steal the information or misuse it. To provide security to the data during transmission is becoming hot research and quite challenging topic. In this work, our proposed algorithm enhances the security of the keys by increasing its complexity, so that it can't be guessed, breached or stolen by the third party and hence by this, the data will be concealed while sending between the users. The proposed algorithm also provides more security and authentication to the users during cloud communication, as compared to the previously existing algorithm.

2021-01-20
Lei, M., Jin, M., Huang, T., Guo, Z., Wang, Q., Wu, Z., Chen, Z., Chen, X., Zhang, J..  2020.  Ultra-wideband Fingerprinting Positioning Based on Convolutional Neural Network. 2020 International Conference on Computer, Information and Telecommunication Systems (CITS). :1—5.

The Global Positioning System (GPS) can determine the position of any person or object on earth based on satellite signals. But when inside the building, the GPS cannot receive signals, the indoor positioning system will determine the precise position. How to achieve more precise positioning is the difficulty of an indoor positioning system now. In this paper, we proposed an ultra-wideband fingerprinting positioning method based on a convolutional neural network (CNN), and we collect the dataset in a room to test the model, then compare our method with the existing method. In the experiment, our method can reach an accuracy of 98.36%. Compared with other fingerprint positioning methods our method has a great improvement in robustness. That results show that our method has good practicality while achieves higher accuracy.

2020-12-11
Xie, J., Zhang, M., Ma, Y..  2019.  Using Format Migration and Preservation Metadata to Support Digital Preservation of Scientific Data. 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). :1—6.

With the development of e-Science and data intensive scientific discovery, it needs to ensure scientific data available for the long-term, with the goal that the valuable scientific data should be discovered and re-used for downstream investigations, either alone, or in combination with newly generated data. As such, the preservation of scientific data enables that not only might experiment be reproducible and verifiable, but also new questions can be raised by other scientists to promote research and innovation. In this paper, we focus on the two main problems of digital preservation that are format migration and preservation metadata. Format migration includes both format verification and object transformation. The system architecture of format migration and preservation metadata is presented, mapping rules of object transformation are analyzed, data fixity and integrity and authenticity, digital signature and so on are discussed and an example is shown in detail.

2020-12-02
Wang, W., Xuan, S., Yang, W., Chen, Y..  2019.  User Credibility Assessment Based on Trust Propagation in Microblog. 2019 Computing, Communications and IoT Applications (ComComAp). :270—275.

Nowadays, Microblog has become an important online social networking platform, and a large number of users share information through Microblog. Many malicious users have released various false news driven by various interests, which seriously affects the availability of Microblog platform. Therefore, the evaluation of Microblog user credibility has become an important research issue. This paper proposes a microblog user credibility evaluation algorithm based on trust propagation. In view of the high consumption and low precision caused by malicious users' attacking algorithms and manual selection of seed sets by establishing false social relationships, this paper proposes two optimization strategies: pruning algorithm based on social activity and similarity and based on The seed node selection algorithm of clustering. The pruning algorithm can trim off the attack edges established by malicious users and normal users. The seed node selection algorithm can efficiently select the highly available seed node set, and finally use the user social relationship graph to perform the two-way propagation trust scoring, so that the low trusted user has a lower trusted score and thus identifies the malicious user. The related experiments verify the effectiveness of the trustworthiness-based user credibility evaluation algorithm in the evaluation of Microblog user credibility.

2020-11-30
Anyfantis, D. I., Sarigiannidou, E., Rapenne, L., Stamatelatos, A., Ntemogiannis, D., Kapaklis, V., Poulopoulos, P..  2019.  Unexpected Development of Perpendicular Magnetic Anisotropy in Ni/NiO Multilayers After Mild Thermal Annealing. IEEE Magnetics Letters. 10:1–5.
We report on the significant enhancement of perpendicular magnetic anisotropy of Ni/NiO multilayers after mild annealing up to 90 min at 250 °C. Transmission electron microscopy shows that after annealing, a partial crystallization of the initially amorphous NiO layers occurs. This turns out to be the source of the anisotropy enhancement. Magnetic measurements reveal that even multilayers with Ni layers as thick as 7 nm, which in the as-deposited state showed inplane anisotropy with square hysteresis loops, show reduced in-plane remanence after thermal treatment. Hysteresis loops recorded with the field in the normal-to-film-plane direction provide evidence for perpendicular magnetic anisotropy with up and down magnetic domains at remanence. A plot of effective uniaxial magnetic anisotropy constant times individual Ni layer thickness as a function of individual Ni layer thickness shows a large change in the slope of the data attributed to a drastic change of volume anisotropy. Surface anisotropy showed a small decrease because of some layer roughening introduced by annealing.
2020-11-23
Haddad, G. El, Aïmeur, E., Hage, H..  2018.  Understanding Trust, Privacy and Financial Fears in Online Payment. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :28–36.
In online payment, customers must transmit their personal and financial information through the website to conclude their purchase and pay the services or items selected. They may face possible fears from online transactions raised by their risk perception about financial or privacy loss. They may have concerns over the payment decision with the possible negative behaviors such as shopping cart abandonment. Therefore, customers have three major players that need to be addressed in online payment: the online seller, the payment page, and their own perception. However, few studies have explored these three players in an online purchasing environment. In this paper, we focus on the customer concerns and examine the antecedents of trust, payment security perception as well as their joint effect on two fundamentally important customers' aspects privacy concerns and financial fear perception. A total of 392 individuals participated in an online survey. The results highlight the importance, of the seller website's components (such as ease of use, security signs, and quality information) and their impact on the perceived payment security as well as their impact on customer's trust and financial fear perception. The objective of our study is to design a research model that explains the factors contributing to an online payment decision.
Alruwaythi, M., Kambampaty, K., Nygard, K..  2018.  User Behavior Trust Modeling in Cloud Security. 2018 International Conference on Computational Science and Computational Intelligence (CSCI). :1336–1339.
Evaluating user behavior in cloud computing infrastructure is important for both Cloud Users and Cloud Service Providers. The service providers must ensure the safety of users who access the cloud. User behavior can be modeled and employed to help assess trust and play a role in ensuring authenticity and safety of the user. In this paper, we propose a User Behavior Trust Model based on Fuzzy Logic (UBTMFL). In this model, we develop user history patterns and compare them current user behavior. The outcome of the comparison is sent to a trust computation center to calculate a user trust value. This model considers three types of trust: direct, history and comprehensive. Simulation results are included.
2020-11-20
Paul, S., Padhy, N. P., Mishra, S. K., Srivastava, A. K..  2019.  UUCA: Utility-User Cooperative Algorithm for Flexible Load Scheduling in Distribution System. 2019 8th International Conference on Power Systems (ICPS). :1—6.
Demand response analysis in smart grid deployment substantiated itself as an important research area in recent few years. Two-way communication between utility and users makes peak load reduction feasible by delaying the operation of deferrable appliances. Flexible appliance rescheduling is preferred to the users compared to traditional load curtailment. Again, if users' preferences are accounted into appliance transferring process, then customers concede a little discomfort to help the utility in peak reduction. This paper presents a novel Utility-User Cooperative Algorithm (UUCA) to lower total electricity cost and gross peak demand while preserving users' privacy and preferences. Main driving force in UUCA to motivate the consumers is a new cost function for their flexible appliances. As a result, utility will experience low peak and due to electricity cost decrement, users will get reduced bill. However, to maintain privacy, the behaviors of one customer have not be revealed either to other customers or to the central utility. To justify the effectiveness, UUCA is executed separately on residential, commercial and industrial customers of a distribution grid. Harmony search optimization technique has proved itself superior compared to other heuristic search techniques to prove efficacy of UUCA.
2020-11-09
Ekşim, A., Demirci, T..  2019.  Ultimate Secrecy in Wireless Communications. 2019 11th International Conference on Electrical and Electronics Engineering (ELECO). :682–686.
In this work, communication secrecy in the physical layer for various radio frequencies is examined. Frequencies with the highest level of secrecy in 1-1000 GHz range and their level of communication secrecy are derived. The concept of ultimate secrecy in wireless communications is proposed. Attenuation lines and ranges of both detection and ultimate secrecy are calculated for transmitter powers from 1 W to 1000 W. From results, frequencies with the highest potential to apply bandwidth saving method known as frequency reuse are devised. Commonly used secrecy benchmarks for the given conditions are calculated. Frequencies with the highest attenuation are devised and their ranges of both detection and ultimate secrecy are calculated.
Kemp, C., Calvert, C., Khoshgoftaar, T..  2018.  Utilizing Netflow Data to Detect Slow Read Attacks. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :108–116.
Attackers can leverage several techniques to compromise computer networks, ranging from sophisticated malware to DDoS (Distributed Denial of Service) attacks that target the application layer. Application layer DDoS attacks, such as Slow Read, are implemented with just enough traffic to tie up CPU or memory resources causing web and application servers to go offline. Such attacks can mimic legitimate network requests making them difficult to detect. They also utilize less volume than traditional DDoS attacks. These low volume attack methods can often go undetected by network security solutions until it is too late. In this paper, we explore the use of machine learners for detecting Slow Read DDoS attacks on web servers at the application layer. Our approach uses a generated dataset based upon Netflow data collected at the application layer on a live network environment. Our Netflow data uses the IP Flow Information Export (IPFIX) standard providing significant flexibility and features. These Netflow features can process and handle a growing amount of traffic and have worked well in our previous DDoS work detecting evasion techniques. Our generated dataset consists of real-world network data collected from a production network. We use eight different classifiers to build Slow Read attack detection models. Our wide selection of learners provides us with a more comprehensive analysis of Slow Read detection models. Experimental results show that the machine learners were quite successful in identifying the Slow Read attacks with a high detection and low false alarm rate. The experiment demonstrates that our chosen Netflow features are discriminative enough to detect such attacks accurately.
2020-11-02
Chong, T., Anu, V., Sultana, K. Z..  2019.  Using Software Metrics for Predicting Vulnerable Code-Components: A Study on Java and Python Open Source Projects. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :98–103.

Software vulnerabilities often remain hidden until an attacker exploits the weak/insecure code. Therefore, testing the software from a vulnerability discovery perspective becomes challenging for developers if they do not inspect their code thoroughly (which is time-consuming). We propose that vulnerability prediction using certain software metrics can support the testing process by identifying vulnerable code-components (e.g., functions, classes, etc.). Once a code-component is predicted as vulnerable, the developers can focus their testing efforts on it, thereby avoiding the time/effort required for testing the entire application. The current paper presents a study that compares how software metrics perform as vulnerability predictors for software projects developed in two different languages (Java vs Python). The goal of this research is to analyze the vulnerability prediction performance of software metrics for different programming languages. We designed and conducted experiments on security vulnerabilities reported for three Java projects (Apache Tomcat 6, Tomcat 7, Apache CXF) and two Python projects (Django and Keystone). In this paper, we focus on a specific type of code component: Functions. We apply Machine Learning models for predicting vulnerable functions. Overall results show that software metrics-based vulnerability prediction is more useful for Java projects than Python projects (i.e., software metrics when used as features were able to predict Java vulnerable functions with a higher recall and precision compared to Python vulnerable functions prediction).

2020-10-26
Li, Huhua, Zhan, Dongyang, Liu, Tianrui, Ye, Lin.  2019.  Using Deep-Learning-Based Memory Analysis for Malware Detection in Cloud. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :1–6.
Malware is one of the biggest threats in cloud computing. Malware running inside virtual machines or containers could steal critical information or continue to attack other cloud nodes. To detect malware in cloud, especially zero-day malware, signature-and machine-learning-based approaches are proposed to analyze the execution binary. However, malicious binary files may not permanently be stored in the file system of virtual machine or container, periodically scanner may not find the target files. Dynamic analysis approach usually introduce run-time overhead to virtual machines, which is not widely used in cloud. To solve these problems, we propose a memory analysis approach to detect malware, employing the deep learning technology. The system analyzes the memory image periodically during malware execution, which will not introduce run-time overhead. We first extract the memory snapshot from running virtual machines or containers. Then, the snapshot is converted to a grayscale image. Finally, we employ CNN to detect malware. In the learning phase, malicious and benign software are trained. In the testing phase, we test our system with real-world malwares.
2020-10-16
Kő, Andrea, Molnár, Tamás, Mátyus, Bálint.  2018.  A User-centred Design Approach for Mobile- Government Systems for the Elderly. 2018 12th International Conference on Software, Knowledge, Information Management Applications (SKIMA). :1—7.

This paper aims to discover the characteristics of acceptance of mobile government systems by elderly. Several initiatives and projects offer various governmental services for them, like information sharing, alerting and mHealth services. All of them carry important benefits for this user group, but these can only be utilized if the user acceptance is at a certain level. This is a requirement in order for the users to perceive the services as a benefit and not as hindrance. The key aspects for high acceptance are usability and user-friendliness, which will lead to successful-government systems designed for the target group. We have applied a combination of qualitative and quantitative research methods including an m-Government prototype to explore the key acceptance factors. Research approach utilizes the IGUAN framework, which is a user-driven method. We collected and analysed data guided by IGUAN framework about the acceptance of e-government services by elderly. The target group was recruited from Germany and Hungary. Our findings draw the attention to perceived security and perceived usability of an application; these are decisive factors for this target group.

Leon, Diego, Mayorga, Franklin, Vargas, Javier, Toasa, Renato, Guevara, David.  2018.  Using of an anonymous communication in e-government services: In the prevention of passive attacks on a network. 2018 13th Iberian Conference on Information Systems and Technologies (CISTI). :1—4.

Nowadays citizens live in a world where communication technologies offer opportunities for new interactions between people and society. Clearly, e-government is changing the way citizens relate to their government, moving the interaction of physical environment and management towards digital participation. Therefore, it is necessary for e-government to have procedures in place to prevent and lessen the negative impact of an attack or intrusion by third parties. In this research work, he focuses on the implementation of anonymous communication in a proof of concept application called “Delta”, whose function is to allow auctions and offers of products, thus marking the basis for future implementations in e-government services.

2020-09-21
Arrieta, Miguel, Esnaola, Iñaki, Effros, Michelle.  2019.  Universal Privacy Guarantees for Smart Meters. 2019 IEEE International Symposium on Information Theory (ISIT). :2154–2158.
Smart meters enable improvements in electricity distribution system efficiency at some cost in customer privacy. Users with home batteries can mitigate this privacy loss by applying charging policies that mask their underlying energy use. A battery charging policy is proposed and shown to provide universal privacy guarantees subject to a constraint on energy cost. The guarantee bounds our strategy's maximal information leakage from the user to the utility provider under general stochastic models of user energy consumption. The policy construction adapts coding strategies for non-probabilistic permuting channels to this privacy problem.
2020-09-14
Sani, Abubakar Sadiq, Yuan, Dong, Bao, Wei, Dong, Zhao Yang, Vucetic, Branka, Bertino, Elisa.  2019.  Universally Composable Key Bootstrapping and Secure Communication Protocols for the Energy Internet. IEEE Transactions on Information Forensics and Security. 14:2113–2127.
The Energy Internet is an advanced smart grid solution to increase energy efficiency by jointly operating multiple energy resources via the Internet. However, such an increasing integration of energy resources requires secure and efficient communication in the Energy Internet. To address such a requirement, we propose a new secure key bootstrapping protocol to support the integration and operation of energy resources. By using a universal composability model that provides a strong security notion for designing and analyzing cryptographic protocols, we define an ideal functionality that supports several cryptographic primitives used in this paper. Furthermore, we provide an ideal functionality for key bootstrapping and secure communication, which allows exchanged session keys to be used for secure communication in an ideal manner. We propose the first secure key bootstrapping protocol that enables a user to verify the identities of other users before key bootstrapping. We also present a secure communication protocol for unicast and multicast communications. The ideal functionalities help in the design and analysis of the proposed protocols. We perform some experiments to validate the performance of our protocols, and the results show that our protocols are superior to the existing related protocols and are suitable for the Energy Internet. As a proof of concept, we apply our functionalities to a practical key bootstrapping protocol, namely generic bootstrapping architecture.
2020-09-04
Merhav, Neri, Cohen, Asaf.  2019.  Universal Randomized Guessing with Application to Asynchronous Decentralized Brute—Force Attacks. 2019 IEEE International Symposium on Information Theory (ISIT). :485—489.
Consider the problem of guessing a random vector X by submitting queries (guesses) of the form "Is X equal to x?" until an affirmative answer is obtained. A key figure of merit is the number of queries required until the right vector is guessed, termed the guesswork. The goal is to devise a guessing strategy which minimizes a certain guesswork moment. We study a universal, decentralized scenario where the guesser does not know the distribution of X, and is not allowed to prepare a list of words to be guessed in advance, or to remember its past guesses. Such a scenario is useful, for example, if bots within a Botnet carry out a brute-force attack to guess a password or decrypt a message, yet cannot coordinate the guesses or even know how many bots actually participate in the attack. We devise universal decentralized guessing strategies, first, for memoryless sources, and then generalize them to finite-state sources. For both, we derive the guessing exponent and prove its asymptotic optimality by deriving a matching converse. The strategies are based on randomized guessing using a universal distribution. We also extend the results to guessing with side information (SI). Finally, we design simple algorithms for sampling from the universal distributions.
Chatterjee, Urbi, Santikellur, Pranesh, Sadhukhan, Rajat, Govindan, Vidya, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2019.  United We Stand: A Threshold Signature Scheme for Identifying Outliers in PLCs. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1—2.

This work proposes a scheme to detect, isolate and mitigate malicious disruption of electro-mechanical processes in legacy PLCs where each PLC works as a finite state machine (FSM) and goes through predefined states depending on the control flow of the programs and input-output mechanism. The scheme generates a group-signature for a particular state combining the signature shares from each of these PLCs using \$(k,\textbackslashtextbackslash l)\$-threshold signature scheme.If some of them are affected by the malicious code, signature can be verified by k out of l uncorrupted PLCs and can be used to detect the corrupted PLCs and the compromised state. We use OpenPLC software to simulate Legacy PLC system on Raspberry Pi and show İ/O\$ pin configuration attack on digital and pulse width modulation (PWM) pins. We describe the protocol using a small prototype of five instances of legacy PLCs simultaneously running on OpenPLC software. We show that when our proposed protocol is deployed, the aforementioned attacks get successfully detected and the controller takes corrective measures. This work has been developed as a part of the problem statement given in the Cyber Security Awareness Week-2017 competition.

2020-08-28
Avellaneda, Florent, Alikacem, El-Hackemi, Jaafar, Femi.  2019.  Using Attack Pattern for Cyber Attack Attribution. 2019 International Conference on Cybersecurity (ICoCSec). :1—6.

A cyber attack is a malicious and deliberate attempt by an individual or organization to breach the integrity, confidentiality, and/or availability of data or services of an information system of another individual or organization. Being able to attribute a cyber attack is a crucial question for security but this question is also known to be a difficult problem. The main reason why there is currently no solution that automatically identifies the initiator of an attack is that attackers usually use proxies, i.e. an intermediate node that relays a host over the network. In this paper, we propose to formalize the problem of identifying the initiator of a cyber attack. We show that if the attack scenario used by the attacker is known, then we are able to resolve the cyber attribution problem. Indeed, we propose a model to formalize these attack scenarios, that we call attack patterns, and give an efficient algorithm to search for attack pattern on a communication history. Finally, we experimentally show the relevance of our approach.