Visible to the public Biblio

Found 286 results

Filters: First Letter Of Title is U  [Clear All Filters]
2020-03-09
Xie, Yuanpeng, Jiang, Yixin, Liao, Runfa, Wen, Hong, Meng, Jiaxiao, Guo, Xiaobin, Xu, Aidong, Guan, Zewu.  2015.  User Privacy Protection for Cloud Computing Based Smart Grid. 2015 IEEE/CIC International Conference on Communications in China - Workshops (CIC/ICCC). :7–11.

The smart grid aims to improve the efficiency, reliability and safety of the electric system via modern communication system, it's necessary to utilize cloud computing to process and store the data. In fact, it's a promising paradigm to integrate smart grid into cloud computing. However, access to cloud computing system also brings data security issues. This paper focuses on the protection of user privacy in smart meter system based on data combination privacy and trusted third party. The paper demonstrates the security issues for smart grid communication system and cloud computing respectively, and illustrates the security issues for the integration. And we introduce data chunk storage and chunk relationship confusion to protect user privacy. We also propose a chunk information list system for inserting and searching data.

2020-02-26
Al-issa, Abdulaziz I., Al-Akhras, Mousa, ALsahli, Mohammed S., Alawairdhi, Mohammed.  2019.  Using Machine Learning to Detect DoS Attacks in Wireless Sensor Networks. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :107–112.

Widespread use of Wireless Sensor Networks (WSNs) introduced many security threats due to the nature of such networks, particularly limited hardware resources and infrastructure less nature. Denial of Service attack is one of the most common types of attacks that face such type of networks. Building an Intrusion Detection and Prevention System to mitigate the effect of Denial of Service attack is not an easy task. This paper proposes the use of two machine learning techniques, namely decision trees and Support Vector Machines, to detect attack signature on a specialized dataset. The used dataset contains regular profiles and several Denial of Service attack scenarios in WSNs. The experimental results show that decision trees technique achieved better (higher) true positive rate and better (lower) false positive rate than Support Vector Machines, 99.86% vs 99.62%, and 0.05% vs. 0.09%, respectively.

2020-02-17
Shang, Jiacheng, Wu, Jie.  2019.  A Usable Authentication System Using Wrist-Worn Photoplethysmography Sensors on Smartwatches. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.
Smartwatches are expected to become the world's best-selling electronic product after smartphones. Various smart-watches have been released to the private consumer market, but the data on smartwatches is not well protected. In this paper, we show for the first time that photoplethysmography (PPG)signals influenced by hand gestures can be used to authenticate users on smartwatches. The insight is that muscle and tendon movements caused by hand gestures compress the arterial geometry with different degrees, which has a significant impact on the blood flow. Based on this insight, novel approaches are proposed to detect the starting point and ending point of the hand gesture from raw PPG signals and determine if these PPG signals are from a normal user or an attacker. Different from existing solutions, our approach leverages the PPG sensors that are available on most smartwatches and does not need to collect training data from attackers. Also, our system can be used in more general scenarios wherever users can perform hand gestures and is robust against shoulder surfing attacks. We conduct various experiments to evaluate the performance of our system and show that our system achieves an average authentication accuracy of 96.31 % and an average true rejection rate of at least 91.64% against two types of attacks.
2020-02-10
Chechik, Marsha.  2019.  Uncertain Requirements, Assurance and Machine Learning. 2019 IEEE 27th International Requirements Engineering Conference (RE). :2–3.
From financial services platforms to social networks to vehicle control, software has come to mediate many activities of daily life. Governing bodies and standards organizations have responded to this trend by creating regulations and standards to address issues such as safety, security and privacy. In this environment, the compliance of software development to standards and regulations has emerged as a key requirement. Compliance claims and arguments are often captured in assurance cases, with linked evidence of compliance. Evidence can come from testcases, verification proofs, human judgement, or a combination of these. That is, we try to build (safety-critical) systems carefully according to well justified methods and articulate these justifications in an assurance case that is ultimately judged by a human. Yet software is deeply rooted in uncertainty making pragmatic assurance more inductive than deductive: most of complex open-world functionality is either not completely specifiable (due to uncertainty) or it is not cost-effective to do so, and deductive verification cannot happen without specification. Inductive assurance, achieved by sampling or testing, is easier but generalization from finite set of examples cannot be formally justified. And of course the recent popularity of constructing software via machine learning only worsens the problem - rather than being specified by predefined requirements, machine-learned components learn existing patterns from the available training data, and make predictions for unseen data when deployed. On the surface, this ability is extremely useful for hard-to specify concepts, e.g., the definition of a pedestrian in a pedestrian detection component of a vehicle. On the other, safety assessment and assurance of such components becomes very challenging. In this talk, I focus on two specific approaches to arguing about safety and security of software under uncertainty. The first one is a framework for managing uncertainty in assurance cases (for "conventional" and "machine-learned" systems) by systematically identifying, assessing and addressing it. The second is recent work on supporting development of requirements for machine-learned components in safety-critical domains.
2020-01-28
Hou, Size, Huang, Xin.  2019.  Use of Machine Learning in Detecting Network Security of Edge Computing System. 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA). :252–256.

This study has built a simulation of a smart home system by the Alibaba ECS. The architecture of hardware was based on edge computing technology. The whole method would design a clear classifier to find the boundary between regular and mutation codes. It could be applied in the detection of the mutation code of network. The project has used the dataset vector to divide them into positive and negative type, and the final result has shown the RBF-function SVM method perform best in this mission. This research has got a good network security detection in the IoT systems and increased the applications of machine learning.

2020-01-27
Cesar, Pablo, Zwitser, Robert, Webb, Andrew, Ashby, Liam, Ali, Abdallah.  2019.  Uncovering Perceived Identification Accuracy of In-Vehicle Biometric Sensing | Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings. AutomotiveUI '19: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings.

Biometric techniques can help make vehicles safer to drive, authenticate users, and provide personalized in-car experiences. However, it is unclear to what extent users are willing to trade their personal biometric data for such benefits. In this early work, we conducted an open card sorting study (N=11) to better understand how well users perceive their physical, behavioral and physiological features can personally identify them. Findings showed that on average participants clustered features into six groups, and helped us revise ambiguous cards and better understand users' clustering. These findings provide the basis for a follow up online closed card sorting study to more fully understand perceived identification accuracy of (in-vehicle) biometric sensing. By uncovering this at a larger scale, we can then further study the privacy and user experience trade-off in (automated) vehicles.

Jarecki, Stanislaw, Krawczyk, Hugo, Resch, Jason.  2019.  Updatable Oblivious Key Management for Storage Systems. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. :379–393.

We introduce Oblivious Key Management Systems (KMS) as a much more secure alternative to traditional wrapping-based KMS that form the backbone of key management in large-scale data storage deployments. The new system, that builds on Oblivious Pseudorandom Functions (OPRF), hides keys and object identifiers from the KMS, offers unconditional security for key transport, provides key verifiability, reduces storage, and more. Further, we show how to provide all these features in a distributed threshold implementation that enhances protection against server compromise. We extend this system with updatable encryption capability that supports key updates (known as key rotation) so that upon the periodic change of OPRF keys by the KMS server, a very efficient update procedure allows a client of the KMS service to non-interactively update all its encrypted data to be decryptable only by the new key. This enhances security with forward and post-compromise security, namely, security against future and past compromises, respectively, of the client's OPRF keys held by the KMS. Additionally, and in contrast to traditional KMS, our solution supports public key encryption and dispenses with any interaction with the KMS for data encryption (only decryption by the client requires such communication). Our solutions build on recent work on updatable encryption but with significant enhancements applicable to the remote KMS setting. In addition to the critical security improvements, our designs are highly efficient and ready for use in practice. We report on experimental implementation and performance.

2020-01-21
Hou, Ye, Such, Jose, Rashid, Awais.  2019.  Understanding Security Requirements for Industrial Control System Supply Chains. 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). :50–53.

We address the need for security requirements to take into account risks arising from complex supply chains underpinning cyber-physical infrastructures such as industrial control systems (ICS). We present SEISMiC (SEcurity Industrial control SysteM supply Chains), a framework that takes into account the whole spectrum of security risks - from technical aspects through to human and organizational issues - across an ICS supply chain. We demonstrate the effectiveness of SEISMiC through a supply chain risk assessment of Natanz, Iran's nuclear facility that was the subject of the Stuxnet attack.

Mercadier, Darius, Dagand, Pierre-Évariste.  2019.  Usuba: High-Throughput and Constant-Time Ciphers, by Construction. Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. :157–173.
Cryptographic primitives are subject to diverging imperatives. Functional correctness and auditability pushes for the use of a high-level programming language. Performance and the threat of timing attacks push for using no more abstract than an assembler to exploit (or avoid!) the micro-architectural features of a given machine. We believe that a suitable programming language can reconcile both views and actually improve on the state of the art of both. Usuba is an opinionated dataflow programming language in which block ciphers become so simple as to be ``obviously correct'' and whose types document and enforce valid parallelization strategies at the granularity of individual bits. Its optimizing compiler, Usubac, produces high-throughput, constant-time implementations performing on par with hand-tuned reference implementations. The cornerstone of our approach is a systematization and generalization of bitslicing, an implementation trick frequently used by cryptographers.
Memon, Salman, Maheswaran, Muthucumaru.  2019.  Using Machine Learning for Handover Optimization in Vehicular Fog Computing. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. :182–190.
Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set.
Headrick, William J, Subramanian, Gokul.  2019.  Using Layer 2 or 3 Switches to Augment Information Assurance in Modern ATE. 2019 IEEE AUTOTESTCON. :1–4.

For modern Automatic Test Equipment (ATE) one of the most daunting tasks is now Information Assurance (IA). What was once at most a secondary item consisting mainly of installing an Anti-Virus suite is now becoming one of the most important aspects of ATE. Given the current climate of IA it has become important to ensure ATE is kept safe from any breaches of security or loss of information. Even though most ATE are not on the Internet (or even on a local network for many) they are still vulnerable to some of the same attack vectors plaguing common computers and other electronic devices. This paper will discuss one method which can be used to ensure that modern ATE can continue to be used to test and detect faults in the systems they are designed to test. Most modern ATE include one or more Ethernet switches to allow communication to the many Instruments or devices contained within them. If the switches purchased are managed and support layer 2 or layer 3 of the Open Systems Interconnection (OSI) model they can also be used to help in the IA footprint of the station. Simple configurations such as limiting broadcast or multicast packets to the appropriate devices is the first step of limiting access to devices to what is needed. If the switch also includes some layer 3 like capabilities Virtual Local Area Networks can be created to further limit the communication pathways to only what is required to perform the required tasks. These and other simple switch configurations while not required can help limit the access of a virus or worm. This paper will discuss these and other configuration tools which can help prevent an ATE system from being compromised.

Singh, Malvika, Mehtre, B.M., Sangeetha, S..  2019.  User Behavior Profiling Using Ensemble Approach for Insider Threat Detection. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–8.

The greatest threat towards securing the organization and its assets are no longer the attackers attacking beyond the network walls of the organization but the insiders present within the organization with malicious intent. Existing approaches helps to monitor, detect and prevent any malicious activities within an organization's network while ignoring the human behavior impact on security. In this paper we have focused on user behavior profiling approach to monitor and analyze user behavior action sequence to detect insider threats. We present an ensemble hybrid machine learning approach using Multi State Long Short Term Memory (MSLSTM) and Convolution Neural Networks (CNN) based time series anomaly detection to detect the additive outliers in the behavior patterns based on their spatial-temporal behavior features. We find that using Multistate LSTM is better than basic single state LSTM. The proposed method with Multistate LSTM can successfully detect the insider threats providing the AUC of 0.9042 on train data and AUC of 0.9047 on test data when trained with publically available dataset for insider threats.

2020-01-02
Siser, Anton, Maris, Ladislav, Rehák, David, Pellowski, Witalis.  2018.  The Use of Expert Judgement as the Method to Obtain Delay Time Values of Passive Barriers in the Context of the Physical Protection System. 2018 International Carnahan Conference on Security Technology (ICCST). :1–5.

Due to its costly and time-consuming nature and a wide range of passive barrier elements and tools for their breaching, testing the delay time of passive barriers is only possible as an experimental tool to verify expert judgements of said delay times. The article focuses on the possibility of creating and utilizing a new method of acquiring values of delay time for various passive barrier elements using expert judgements which could add to the creation of charts where interactions between the used elements of mechanical barriers and the potential tools for their bypassing would be assigned a temporal value. The article consists of basic description of methods of expert judgements previously applied for making prognoses of socio-economic development and in other societal areas, which are called soft system. In terms of the problem of delay time, this method needed to be modified in such a way that the prospective output would be expressible by a specific quantitative value. To achieve this goal, each stage of the expert judgements was adjusted to the use of suitable scientific methods to select appropriate experts and then to achieve and process the expert data. High emphasis was placed on evaluation of quality and reliability of the expert judgements, which takes into account the specifics of expert selection such as their low numbers, specialization and practical experience.

2019-12-30
Heydari, Mohammad, Mylonas, Alexios, Katos, Vasilios, Balaguer-Ballester, Emili, Tafreshi, Vahid Heydari Fami, Benkhelifa, Elhadj.  2019.  Uncertainty-Aware Authentication Model for Fog Computing in IoT. 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). :52–59.

Since the term “Fog Computing” has been coined by Cisco Systems in 2012, security and privacy issues of this promising paradigm are still open challenges. Among various security challenges, Access Control is a crucial concern for all cloud computing-like systems (e.g. Fog computing, Mobile edge computing) in the IoT era. Therefore, assigning the precise level of access in such an inherently scalable, heterogeneous and dynamic environment is not easy to perform. This work defines the uncertainty challenge for authentication phase of the access control in fog computing because on one hand fog has a number of characteristics that amplify uncertainty in authentication and on the other hand applying traditional access control models does not result in a flexible and resilient solution. Therefore, we have proposed a novel prediction model based on the extension of Attribute Based Access Control (ABAC) model. Our data-driven model is able to handle uncertainty in authentication. It is also able to consider the mobility of mobile edge devices in order to handle authentication. In doing so, we have built our model using and comparing four supervised classification algorithms namely as Decision Tree, Naïve Bayes, Logistic Regression and Support Vector Machine. Our model can achieve authentication performance with 88.14% accuracy using Logistic Regression.

2019-12-18
Shepherd, Morgan M., Klein, Gary.  2012.  Using Deterrence to Mitigate Employee Internet Abuse. 2012 45th Hawaii International Conference on System Sciences. :5261–5266.
This study looks at the question of how to reduce/eliminate employee Internet Abuse. Companies have used acceptable use policies (AUP) and technology in an attempt to mitigate employees' personal use of company resources. Research shows that AUPs do not do a good job at this but that technology does. Research also shows that while technology can be used to greatly restrict personal use of the internet in the workplace, employee satisfaction with the workplace suffers when this is done. In this research experiment we used technology not to restrict employee use of company resources for personal use, but to make the employees more aware of the current Acceptable Use Policy, and measured the decrease in employee internet abuse. The results show that this method can result in a drop from 27 to 21 percent personal use of the company networks.
2019-12-17
Huang, Jeff.  2018.  UFO: Predictive Concurrency Use-After-Free Detection. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :609-619.

Use-After-Free (UAF) vulnerabilities are caused by the program operating on a dangling pointer and can be exploited to compromise critical software systems. While there have been many tools to mitigate UAF vulnerabilities, UAF remains one of the most common attack vectors. UAF is particularly di cult to detect in concurrent programs, in which a UAF may only occur with rare thread schedules. In this paper, we present a novel technique, UFO, that can precisely predict UAFs based on a single observed execution trace with a provably higher detection capability than existing techniques with no false positives. The key technical advancement of UFO is an extended maximal thread causality model that captures the largest possible set of feasible traces that can be inferred from a given multithreaded execution trace. By formulating UAF detection as a constraint solving problem atop this model, we can explore a much larger thread scheduling space than classical happens-before based techniques. We have evaluated UFO on several real-world large complex C/C++ programs including Chromium and FireFox. UFO scales to real-world systems with hundreds of millions of events in their execution and has detected a large number of real concurrency UAFs.

2019-12-11
Hogan, Kyle, Maleki, Hoda, Rahaeimehr, Reza, Canetti, Ran, van Dijk, Marten, Hennessey, Jason, Varia, Mayank, Zhang, Haibin.  2019.  On the Universally Composable Security of OpenStack. 2019 IEEE Cybersecurity Development (SecDev). :20–33.
We initiate an effort to provide a rigorous, holistic and modular security analysis of OpenStack. OpenStack is the prevalent open-source, non-proprietary package for managing cloud services and data centers. It is highly complex and consists of multiple inter-related components which are developed by separate, loosely coordinated groups. All of these properties make the security analysis of OpenStack both a worthy mission and a challenging one. We base our modeling and security analysis in the universally composable (UC) security framework. This allows specifying and proving security in a modular way – a crucial feature when analyzing systems of such magnitude. Our analysis has the following key features: 1) It is user-centric: It stresses the security guarantees given to users of the system in terms of privacy, correctness, and timeliness of the services. 2) It considers the security of OpenStack even when some of the components are compromised. This departs from the traditional design approach of OpenStack, which assumes that all services are fully trusted. 3) It is modular: It formulates security properties for individual components and uses them to prove security properties of the overall system. Specifically, this work concentrates on the high-level structure of OpenStack, leaving the further formalization and more detailed analysis of specific OpenStack services to future work. Specifically, we formulate ideal functionalities that correspond to some of the core OpenStack modules, and then proves security of the overall OpenStack protocol given the ideal components. As demonstrated within, the main challenge in the high-level design is to provide adequately fine-grained scoping of permissions to access dynamically changing system resources. We demonstrate security issues with current mechanisms in case of failure of some components, propose alternative mechanisms, and rigorously prove adequacy of then new mechanisms within our modeling.
2019-12-10
Sun, Jie, Yu, Jiancheng, Zhang, Aiqun, Song, Aijun, Zhang, Fumin.  2018.  Underwater Acoustic Intensity Field Reconstruction by Kriged Compressive Sensing. Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems. :5:1-5:8.

This paper presents a novel Kriged Compressive Sensing (KCS) approach for the reconstruction of underwater acoustic intensity fields sampled by multiple gliders following sawtooth sampling patterns. Blank areas in between the sampling trajectories may cause unsatisfying reconstruction results. The KCS method leverages spatial statistical correlation properties of the acoustic intensity field being sampled to improve the compressive reconstruction process. Virtual data samples generated from a kriging method are inserted into the blank areas. We show that by using the virtual samples along with real samples, the acoustic intensity field can be reconstructed with higher accuracy when coherent spatial patterns exist. Corresponding algorithms are developed for both unweighted and weighted KCS methods. By distinguishing the virtual samples from real samples through weighting, the reconstruction results can be further improved. Simulation results show that both algorithms can improve the reconstruction results according to the PSNR and SSIM metrics. The methods are applied to process the ocean ambient noise data collected by the Sea-Wing acoustic gliders in the South China Sea.

2019-12-09
van der Veen, Rosa, Hakkerainen, Viola, Peeters, Jeroen, Trotto, Ambra.  2018.  Understanding Transformations Through Design: Can Resilience Thinking Help? Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction. :694–702.
The interaction design community increasingly addresses how digital technologies may contribute to societal transformations. This paper aims at understanding transformation ignited by a particular constructive design research project. This transformation will be discussed and analysed using resilience thinking, an established approach within sustainability science. By creating a common language between these two disciplines, we start to identify what kind of transformation took place, what factors played a role in the transformation, and which transformative qualities played a role in creating these factors. Our intention is to set out how the notion of resilience might provide a new perspective to understand how constructive design research may produce results that have a sustainable social impact. The findings point towards ways in which these two different perspectives on transformation the analytical perspective of resilience thinking and the generative perspective of constructive design research - may become complementary in both igniting and understanding transformations.
2019-12-02
Yang, Shouguo, Shi, Zhiqiang, Zhang, Guodong, Li, Mingxuan, Ma, Yuan, Sun, Limin.  2019.  Understand Code Style: Efficient CNN-Based Compiler Optimization Recognition System. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Compiler optimization level recognition can be applied to vulnerability discovery and binary analysis. Due to the exists of many different compilation optimization options, the difference in the contents of the binary file is very complicated. There are thousands of compiler optimization algorithms and multiple different processor architectures, so it is very difficult to manually analyze binary files and recognize its compiler optimization level with rules. This paper first proposes a CNN-based compiler optimization level recognition model: BinEye. The system extracts semantic and structural differences and automatically recognize the compiler optimization levels. The model is designed to be very suitable for binary file processing and is easy to understand. We built a dataset containing 80028 binary files for the model training and testing. Our proposed model achieves an accuracy of over 97%. At the same time, BinEye is a fully CNN-based system and it has a faster forward calculation speed, at least 8 times faster than the normal RNN-based model. Through our analysis of the model output, we successfully found the difference in assembly codes caused by the different compiler optimization level. This means that the model we proposed is interpretable. Based on our model, we propose a method to analyze the code differences caused by different compiler optimization levels, which has great guiding significance for analyzing closed source compilers and binary security analysis.
2019-11-19
Sun, Yunhe, Yang, Dongsheng, Meng, Lei, Gao, Xiaoting, Hu, Bo.  2018.  Universal Framework for Vulnerability Assessment of Power Grid Based on Complex Networks. 2018 Chinese Control And Decision Conference (CCDC). :136-141.

Traditionally, power grid vulnerability assessment methods are separated to the study of nodes vulnerability and edges vulnerability, resulting in the evaluation results are not accurate. A framework for vulnerability assessment is still required for power grid. Thus, this paper proposes a universal method for vulnerability assessment of power grid by establishing a complex network model with uniform weight of nodes and edges. The concept of virtual edge is introduced into the distinct weighted complex network model of power system, and the selection function of edge weight and virtual edge weight are constructed based on electrical and physical parameters. In addition, in order to reflect the electrical characteristics of power grids more accurately, a weighted betweenness evaluation index with transmission efficiency is defined. Finally, the method has been demonstrated on the IEEE 39 buses system, and the results prove the effectiveness of the proposed method.

2019-10-30
Lewis, Matt.  2018.  Using Graph Databases to Assess the Security of Thingernets Based on the Thingabilities and Thingertivity of Things. Living in the Internet of Things: Cybersecurity of the IoT - 2018. :1-9.

Security within the IoT is currently below par. Common security issues include IoT device vendors not following security best practices and/or omitting crucial security controls and features within their devices, lack of defined and mandated IoT security standards, default IoT device configurations, missing secure update mechanisms to rectify security flaws discovered in IoT devices and the overall unintended consequence of complexity - the attack surface of networks comprising IoT devices can increase exponentially with the addition of each new device. In this paper we set out an approach using graphs and graph databases to understand IoT network complexity and the impact that different devices and their profiles have on the overall security of the underlying network and its associated data.

2019-10-15
Saleh, Z., Mashhour, A..  2018.  Using Keystroke Authentication Typing Errors Pattern as Non-Repudiation in Computing Forensics. 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :1–6.
Access to information and data is becoming an essential part of nearly every aspect of modern business operation. Unfortunately, accessing information systems comes with increased chances of intrusion and unauthorized access. Acquiring and maintaining evidence from a computer or networks in the current high-tech world is essential in any comprehensive forensic investigation. Software and hardware tools are used to easily manage the evidence and view all relevant files. In an effort to enhance computer access security, keystroke authentication, is one of the biometric solutions that were proposed as a solution for enhancing users' identification. This research proposes using user's keystroke errors to determine guilt during forensics investigations, where it was found that individuals keystroke patters are repeatable and variant from those of others, and that keystroke patterns are impossible to steal or imitate. So, in this paper, we investigate the effectiveness of relying on ``user's mistakes'' as another behavioral biometric keystroke dynamic.
2019-10-14
Yu, M., Halak, B., Zwolinski, M..  2019.  Using Hardware Performance Counters to Detect Control Hijacking Attacks. 2019 IEEE 4th International Verification and Security Workshop (IVSW). :1–6.

Code reuse techniques can circumvent existing security measures. For example, attacks such as Return Oriented Programming (ROP) use fragments of the existing code base to create an attack. Since this code is already in the system, the Data Execution Prevention methods cannot prevent the execution of this reorganised code. Existing software-based Control Flow Integrity can prevent this attack, but the overhead is enormous. Most of the improved methods utilise reduced granularity in exchange for a small performance overhead. Hardware-based detection also faces the same performance overhead and accuracy issues. Benefit from HPC's large-area loading on modern CPU chips, we propose a detection method based on the monitoring of hardware performance counters, which is a lightweight system-level detection for malicious code execution to solve the restrictions of other software and hardware security measures, and is not as complicated as Control Flow Integrity.

2019-09-30
Jiao, Y., Hohlfield, J., Victora, R. H..  2018.  Understanding Transition and Remanence Noise in HAMR. IEEE Transactions on Magnetics. 54:1–5.

Transition noise and remanence noise are the two most important types of media noise in heat-assisted magnetic recording. We examine two methods (spatial splitting and principal components analysis) to distinguish them: both techniques show similar trends with respect to applied field and grain pitch (GP). It was also found that PW50can be affected by GP and reader design, but is almost independent of write field and bit length (larger than 50 nm). Interestingly, our simulation shows a linear relationship between jitter and PW50NSRrem, which agrees qualitatively with experimental results.