Biblio
The paper is devoted to analysis of condition of executing devices and sensors of Industrial Control Systems information security. The work contains structures of industrial control systems divided into groups depending on system's layer. The article contains the analysis of analog interfaces work and work features of data transmission protocols in industrial control system field layer. Questions about relevance of industrial control systems information security, both from the point of view of the information security occurring incidents, and from the point of view of regulators' reaction in the form of normative legal acts, are described. During the analysis of the information security systems of industrial control systems a possibility of leakage through technical channels of information leakage at the field layer was found. Potential vectors of the attacks on devices of field layer and data transmission network of an industrial control system are outlined in the article. The relevance analysis of the threats connected with the attacks at the field layer of an industrial control system is carried out, feature of this layer and attractiveness of this kind of attacks is observed.
Current BLE transmitters are susceptible to selective jamming due to long dwell times in a channel. To mitigate these attacks, we propose physical-layer security through an ultra-fast bit-level frequency-hopping (FH) scheme by exploiting the frequency agility of bulk acoustic wave resonators (BAW). Here we demonstrate the first integrated bit-level FH transmitter (TX) that hops at 1$μ$s period and uses data-driven random dynamic channel selection to enable secure wireless communications with additional data encryption. This system consists of a time-interleaved BAW-based TX implemented in 65nm CMOS technology with 80MHz coverage in the 2.4GHz ISM band and a measured power consumption of 10.9mW from 1.1V supply.
With the frequent use of Wi-Fi and hotspots that provide a wireless Internet environment, awareness and threats to wireless AP (Access Point) security are steadily increasing. Especially when using unauthorized APs in company, government and military facilities, there is a high possibility of being subjected to various viruses and hacking attacks. It is necessary to detect unauthorized Aps for protection of information. In this paper, we use RTT (Round Trip Time) value data set to detect authorized and unauthorized APs in wired / wireless integrated environment, analyze them using machine learning algorithms including SVM (Support Vector Machine), C4.5, KNN (K Nearest Neighbors) and MLP (Multilayer Perceptron). Overall, KNN shows the highest accuracy.
In practice, Defenders need a more efficient network detection approach which has the advantages of quick-responding learning capability of new network behavioural features for network intrusion detection purpose. In many applications the capability of Deep Learning techniques has been confirmed to outperform classic approaches. Accordingly, this study focused on network intrusion detection using convolutional neural networks (CNNs) based on LeNet-5 to classify the network threats. The experiment results show that the prediction accuracy of intrusion detection goes up to 99.65% with samples more than 10,000. The overall accuracy rate is 97.53%.
In recent years, new and devastating cyber attacks amplify the need for robust cybersecurity practices. Preventing novel cyber attacks requires the invention of Intrusion Detection Systems (IDSs), which can identify previously unseen attacks. Many researchers have attempted to produce anomaly - based IDSs, however they are not yet able to detect malicious network traffic consistently enough to warrant implementation in real networks. Obviously, it remains a challenge for the security community to produce IDSs that are suitable for implementation in the real world. In this paper, we propose a new approach using a Deep Belief Network with a combination of supervised and unsupervised machine learning methods for port scanning attacks detection - the task of probing enterprise networks or Internet wide services, searching for vulnerabilities or ways to infiltrate IT assets. Our proposed approach will be tested with network security datasets and compared with previously existing methods.
Immersive technologies have been touted as empathetic mediums. This capability has yet to be fully explored through machine learning integration. Our demo seeks to explore proxemics in mixed-reality (MR) human-human interactions. The author developed a system, where spatial features can be manipulated in real time by identifying emotions corresponding to unique combinations of facial micro-expressions and tonal analysis. The Magic Leap One is used as the interactive interface, the first commercial spatial computing head mounted (virtual retinal) display (HUD). A novel spatial user interface visualization element is prototyped that leverages the affordances of mixed-reality by introducing both a spatial and affective component to interfaces.
Program analyses necessarily make approximations that often lead them to report true alarms interspersed with many false alarms. We propose a new approach to leverage user feedback to guide program analyses towards true alarms and away from false alarms. Our approach associates each alarm with a confidence value by performing Bayesian inference on a probabilistic model derived from the analysis rules. In each iteration, the user inspects the alarm with the highest confidence and labels its ground truth, and the approach recomputes the confidences of the remaining alarms given this feedback. It thereby maximizes the return on the effort by the user in inspecting each alarm. We have implemented our approach in a tool named Bingo for program analyses expressed in Datalog. Experiments with real users and two sophisticated analyses–-a static datarace analysis for Java programs and a static taint analysis for Android apps–-show significant improvements on a range of metrics, including false alarm rates and number of bugs found.
Deprecation is a language feature that allows API producers to mark a feature as obsolete. We aim to gain a deep understanding of the needs of API producers and consumers alike regarding deprecation. To that end, we investigate why API producers deprecate features, whether they remove deprecated features, how they expect consumers to react, and what prompts an API consumer to react to deprecation. To achieve this goal we conduct semi-structured interviews with 17 third-party Java API producers and survey 170 Java developers. We observe that the current deprecation mechanism in Java and the proposal to enhance it does not address all the needs of a developer. This leads us to propose and evaluate three further enhancements to the deprecation mechanism.
The possibility of anonymity and lack of effective ways to identify inappropriate messages have resulted in a significant amount of online interaction data that attempt to harass, bully, or offend the recipient. In this work, we perform a preliminary linguistic study on messages exchanged using one such popular web/smartphone application—Sarahah, that allows friends to exchange messages anonymously. Since messages exchanged via Sarahah are private, we collect them when the recipient shares it on Twitter. We then perform an analysis of the different kinds of messages exchanged through this application. Our linguistic analysis reveals that a significant number of these messages ($\backslash$textasciitilde20%) include inappropriate, hurtful, or profane language intended to embarrass, offend, or bully the recipient. Our analysis helps in understanding the different ways in which anonymous message exchange platforms are used and the different types of bullying present in such exchanges.
Multi-Objective Recommender Systems (MO-RS) consider several objectives to produce useful recommendations. Besides accuracy, other important quality metrics include novelty and diversity of recommended lists of items. Previous research up to this point focused on naive combinations of objectives. In this paper, we present a new and adaptable strategy for prioritizing objectives focused on users' preferences. Our proposed strategy is based on meta-features, i.e., characteristics of the input data that are influential in the final recommendation. We conducted a series of experiments on three real-world datasets, from which we show that: (i) the use of meta-features leads to the improvement of the Pareto solution set in the search process; (ii) the strategy is effective at making choices according to the specificities of the users' preferences; and (iii) our approach outperforms state-of-the-art methods in MO-RS.