Visible to the public Biblio

Found 206 results

Filters: First Letter Of Title is W  [Clear All Filters]
2022-07-13
Glantz, Edward J., Bartolacci, Michael R., Nasereddin, Mahdi, Fusco, David J., Peca, Joanne C., Kachmar, Devin.  2021.  Wireless Cybersecurity Education: A Focus on Curriculum. 2021 Wireless Telecommunications Symposium (WTS). :1—5.
Higher education is increasingly called upon to enhance cyber education, including hands-on "experiential" training. The good news is that additional tools and techniques are becoming more available, both in-house and through third parties, to provide cyber training environments and simulations at various features and price points. However, the training thus far has only focused on "traditional" Cybersecurity that lightly touches on wireless in undergraduate and master's degree programs, and certifications. The purpose of this research is to identify and recognize nascent cyber training emphasizing a broader spectrum of wireless security and encourage curricular development that includes critical experiential training. Experiential wireless security training is important to keep pace with the growth in wireless communication mediums and associated Internet of Things (IoT) and Cyber Physical System (CPS) applications. Cyber faculty at a university offering undergraduate and master's Cybersecurity degrees authored this paper; both degrees are offered to resident as well as online students.
2022-06-06
Silva, J. Sá, Saldanha, Ruben, Pereira, Vasco, Raposo, Duarte, Boavida, Fernando, Rodrigues, André, Abreu, Madalena.  2019.  WeDoCare: A System for Vulnerable Social Groups. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1053–1059.
One of the biggest problems in the current society is people's safety. Safety measures and mechanisms are especially important in the case of vulnerable social groups, such as migrants, homeless, and victims of domestic and/or sexual violence. In order to cope with this problem, we witness an increasing number of personal alarm systems in the market, most of them based on panic buttons. Nevertheless, none of them has got widespread acceptance mainly because of limited Human-Computer Interaction. In the context of this work, we developed an innovative mobile application that recognizes an attack through speech and gesture recognition. This paper describes such a system and presents its features, some of them based on the emerging concept of Human-in-the-Loop Cyber-physical Systems and new concepts of Human-Computer Interaction.
Brauner, Philipp, Ziefle, Martina.  2019.  Why consider the human-in-the-loop in automated cyber-physical production systems? Two cases from cross-company cooperation 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:861–866.
Industry 4.0 and the Internet of Production can increase efficiency and effectiveness of workflows in manufacturing companies and production networks. Despite ubiquitous automation, people are essential in socio-technical cyber-physical production systems due to unique cognitive capabilities, as final arbitrators, or for ethical and legal reasons. However, the design of interfaces between the human-in-the-loop and production systems poses challenges not yet been sufficiently elaborated in research and practice. We present two behavioural studies in the context of inter-company collaboration that show why considering the human-in-the-loop is crucial: The first study shows that information complexity and individual differences shape the overall decision quality. With increasing information complexity, the decision speed decreases and the decision accuracy descends. Consequently, a fine balance between necessary, abundant, and superfluous information must be found. The second experiment studies human decision making in complex environments using a business simulation. We found that correct decision aids can augment the human-in-the-loop's decision making and that these can increase usability, trust, and proft. Yet, incorrect decision support has the opposite effect. Guidelines for designing socio-technical cyber-physical production systems and a research agenda conclude this article.
2022-05-06
Junqing, Zhang, Gangqiang, Zhang, Junkai, Liu.  2021.  Wormhole Attack Detecting in Underwater Acoustic Communication Networks. 2021 OES China Ocean Acoustics (COA). :647—650.

Because the underwater acoustic communication network transmits data through the underwater acoustic wireless link, the Underwater Acoustic Communication Network is easy to suffer from the external artificial interference, in this paper, the detection algorithm of wormhole attack in Underwater Acoustic Communication Network based on Azimuth measurement technology is studied. The existence of wormhole attack is judged by Azimuth or distance outliers, and the security performance of underwater acoustic communication network is evaluated. The influence of different azimuth direction errors on the detection probability of wormhole attack is analyzed by simulation. The simulation results show that this method has a good detection effect for Underwater Acoustic Communication Network.

Wang, Yahui, Cui, Qiushi, Tang, Xinlu, Li, Dongdong, Chen, Tao.  2021.  Waveform Vector Embedding for Incipient Fault Detection in Distribution Systems. 2021 IEEE Sustainable Power and Energy Conference (iSPEC). :3873–3879.
Incipient faults are faults at their initial stages and occur before permanent faults occur. It is very important to detect incipient faults timely and accurately for the safe and stable operation of the power system. At present, most of the detection methods for incipient faults are designed for the detection of a single device’s incipient fault, but a unified detection for multiple devices cannot be achieved. In order to increase the fault detection capability and enable detection expandability, this paper proposes a waveform vector embedding (WVE) method to embed incipient fault waveforms of different devices into waveform vectors. Then, we utilize the waveform vectors and formulate them into a waveform dictionary. To improve the efficiency of embedding the waveform signature into the learning process, we build a loss function that prevents overflow and overfitting of softmax function during when learning power system waveforms. We use the real data collected from an IEEE Power & Energy Society technical report to verify the feasibility of this method. For the result verification, we compare the superiority of this method with Logistic Regression and Support Vector Machine in different scenarios.
2022-04-26
Tekgul, Buse G. A., Xia, Yuxi, Marchal, Samuel, Asokan, N..  2021.  WAFFLE: Watermarking in Federated Learning. 2021 40th International Symposium on Reliable Distributed Systems (SRDS). :310–320.

Federated learning is a distributed learning technique where machine learning models are trained on client devices in which the local training data resides. The training is coordinated via a central server which is, typically, controlled by the intended owner of the resulting model. By avoiding the need to transport the training data to the central server, federated learning improves privacy and efficiency. But it raises the risk of model theft by clients because the resulting model is available on every client device. Even if the application software used for local training may attempt to prevent direct access to the model, a malicious client may bypass any such restrictions by reverse engineering the application software. Watermarking is a well-known deterrence method against model theft by providing the means for model owners to demonstrate ownership of their models. Several recent deep neural network (DNN) watermarking techniques use backdooring: training the models with additional mislabeled data. Backdooring requires full access to the training data and control of the training process. This is feasible when a single party trains the model in a centralized manner, but not in a federated learning setting where the training process and training data are distributed among several client devices. In this paper, we present WAFFLE, the first approach to watermark DNN models trained using federated learning. It introduces a retraining step at the server after each aggregation of local models into the global model. We show that WAFFLE efficiently embeds a resilient watermark into models incurring only negligible degradation in test accuracy (-0.17%), and does not require access to training data. We also introduce a novel technique to generate the backdoor used as a watermark. It outperforms prior techniques, imposing no communication, and low computational (+3.2%) overhead$^\textrm1$$^\textrm1$\$The research report version of this paper is also available in https://arxiv.org/abs/2008.07298, and the code for reproducing our work can be found at https://github.com/ssg-research/WAFFLE.

2022-04-19
Zheng, Tong-Xing, Yang, Ziteng, Wang, Chao, Li, Zan, Yuan, Jinhong, Guan, Xiaohong.  2021.  Wireless Covert Communications Aided by Distributed Cooperative Jamming Over Slow Fading Channels. IEEE Transactions on Wireless Communications. 20:7026–7039.
In this paper, we study covert communications between a pair of legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
Conference Name: IEEE Transactions on Wireless Communications
2022-04-18
Paul, Rajshakhar, Turzo, Asif Kamal, Bosu, Amiangshu.  2021.  Why Security Defects Go Unnoticed During Code Reviews? A Case-Control Study of the Chromium OS Project 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1373–1385.
Peer code review has been found to be effective in identifying security vulnerabilities. However, despite practicing mandatory code reviews, many Open Source Software (OSS) projects still encounter a large number of post-release security vulnerabilities, as some security defects escape those. Therefore, a project manager may wonder if there was any weakness or inconsistency during a code review that missed a security vulnerability. Answers to this question may help a manager pinpointing areas of concern and taking measures to improve the effectiveness of his/her project's code reviews in identifying security defects. Therefore, this study aims to identify the factors that differentiate code reviews that successfully identified security defects from those that missed such defects. With this goal, we conduct a case-control study of Chromium OS project. Using multi-stage semi-automated approaches, we build a dataset of 516 code reviews that successfully identified security defects and 374 code reviews where security defects escaped. The results of our empirical study suggest that the are significant differences between the categories of security defects that are identified and that are missed during code reviews. A logistic regression model fitted on our dataset achieved an AUC score of 0.91 and has identified nine code review attributes that influence identifications of security defects. While time to complete a review, the number of mutual reviews between two developers, and if the review is for a bug fix have positive impacts on vulnerability identification, opposite effects are observed from the number of directories under review, the number of total reviews by a developer, and the total number of prior commits for the file under review.
2022-04-13
Li, Bingzhe, Du, David.  2021.  WAS-Deletion: Workload-Aware Secure Deletion Scheme for Solid-State Drives. 2021 IEEE 39th International Conference on Computer Design (ICCD). :244–247.
Due to the intrinsic properties of Solid-State Drives (SSDs), invalid data remain in SSDs before erased by a garbage collection process, which increases the risk of being attacked by adversaries. Previous studies use erase and cryptography based schemes to purposely delete target data but face extremely large overhead. In this paper, we propose a Workload-Aware Secure Deletion scheme, called WAS-Deletion, to reduce the overhead of secure deletion by three major components. First, the WAS-Deletion scheme efficiently splits invalid and valid data into different blocks based on workload characteristics. Second, the WAS-Deletion scheme uses a new encryption allocation scheme, making the encryption follow the same direction as the write on multiple blocks and vertically encrypts pages with the same key in one block. Finally, a new adaptive scheduling scheme can dynamically change the configurations of different regions to further reduce secure deletion overhead based on the current workload. The experimental results indicate that the newly proposed WAS-Deletion scheme can reduce the secure deletion cost by about 1.2x to 12.9x compared to previous studies.
Silva, Wagner, Garcia, Ana Cristina Bicharra.  2021.  Where is our data? A Blockchain-based Information Chain of Custody Model for Privacy Improvement 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :329–334.
The advancement of Information and Communication Technologies has brought numerous facilities and benefits to society. In this environment, surrounded by technologies, data, and personal information, have become an essential and coveted tool for many sectors. In this scenario, where a large amount of data has been collected, stored, and shared, privacy concerns arise, especially when dealing with sensitive data such as health data. The information owner generally has no control over his information, which can bring serious consequences such as increases in health insurance prices or put the individual in an uncomfortable situation with disclosing his physical or mental health. While privacy regulations, like the General Data Protection Regulation (GDPR), make it clear that the information owner must have full control and management over their data, disparities have been observed in most systems and platforms. Therefore, they are often not able to give consent or have control and management over their data. For the users to exercise their right to privacy and have sufficient control over their data, they must know everything that happens to them, where their data is, and where they have been. It is necessary that the entire life cycle, from generation to deletion of data, is managed by its owner. To this end, this article presents an Information Chain of Custody Model based on Blockchain technology, which allows from the traceability of information to the offer of tools that will enable the effective management of data, offering total control to its owner. The result showed that the prototype was very useful in the traceability of the information. With that it became clear the technical feasibility of this research.
2022-04-12
Kalai Chelvi, T., Ramapraba, P. S., Sathya Priya, M., Vimala, S., Shobarani, R., Jeshwanth, N L, Babisha, A..  2021.  A Web Application for Prevention of Inference Attacks using Crowd Sourcing in Social Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :328—332.
Many people are becoming more reliant on internet social media sites like Facebook. Users can utilize these networks to reveal articles to them and engage with your peers. Several of the data transmitted from these connections is intended to be confidential. However, utilizing publicly available data and learning algorithms, it is feasible to forecast concealed informative data. The proposed research work investigates the different ways to initiate deduction attempts on freely released photo sharing data in order to envisage concealed informative data. Next, this research study offers three distinct sanitization procedures that could be used in a range of scenarios. Moreover, the effectualness of all these strategies and endeavor to utilize collective teaching and research to reveal important bits of the data set are analyzed. It shows how, by using the sanitization methods presented here, a user may lower the accuracy by including both global and interpersonal categorization techniques.
2022-03-22
Huang, Jianming, Hua, Yu.  2021.  A Write-Friendly and Fast-Recovery Scheme for Security Metadata in Non-Volatile Memories. 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). :359—370.
Non-Volatile Memories (NVMs) require security mechanisms, e.g., counter mode encryption and integrity tree verification, which are important to protect systems in terms of encryption and data integrity. These security mechanisms heavily rely on extra security metadata that need to be efficiently and accurately recovered after system crashes or power off. Established SGX integrity tree (SIT) becomes efficient to protect system integrity and however fails to be restored from leaves, since the computations of SIT nodes need their parent nodes as inputs. To recover the security metadata with low write overhead and short recovery time, we propose an efficient and instantaneous persistence scheme, called STAR, which instantly persists the modifications of security metadata without extra memory writes. STAR is motivated by our observation that the parent nodes in cache are modified due to persisting their child nodes. STAR stores the modifications of parent nodes in their child nodes and persists them just using one atomic memory write. To eliminate the overhead of persisting the modifications, STAR coalesces the modifications and MACs in the evicted metadata. For fast recovery and verification of the metadata, STAR uses bitmap lines in asynchronous DRAM refresh (ADR) to indicate the locations of stale metadata, and constructs a cached merkle tree to verify the correctness of the recovery process. Our evaluation results show that compared with state-of-the-art work, our proposed STAR delivers high performance, low write traffic, low energy consumption and short recovery time.
2022-03-14
Baray, Elyas, Kumar Ojha, Nitish.  2021.  ‘WLAN Security Protocols and WPA3 Security Approach Measurement Through Aircrack-ng Technique’. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). :23–30.
From the beginning of technology and Wi-Fi based systems wireless networks had a prominent threat upon data security. Without security measures many organizations contribute on these flaws of security to make it better. There are many vulnerabilities of security models which are discussed in this article such as hacking through Wi-Fi security by Aircrack-ng, previous security model vulnerabilities and also the performance of Aircrack-ng attack on Wi-Fi modem or routers. In order to crack WPA/WPA2, kali Linux operating system will be needed along with Aircrack-ng packages installed on any compatible PC. Some of the new standard WPA3 such like downgrade problem on which the system will let the device to downgrade from WPA3 to WPA2 in order to connect with incompatible devise. Further, it makes a way for hackers to obtain Wi-Fi passwords even from new model defined such as WPA3 by using old techniques. The new model introduced Wi-Fi security protocol WPA3 is also no longer a secure model it can be penetrated. Researchers have discovered some new vulnerability enables hackers to get out the Wi-Fi passwords.
2022-03-09
Gong, Peiyong, Zheng, Kai, Jiang, Yi, Liu, Jia.  2021.  Water Surface Object Detection Based on Neural Style Learning Algorithm. 2021 40th Chinese Control Conference (CCC). :8539—8543.
In order to detect the objects on the water surface, a neural style learning algorithm is proposed in this paper. The algorithm uses the Gram matrix of a pre-trained convolutional neural network to represent the style of the texture in the image, which is originally used for image style transfer. The objects on the water surface can be easily distinguished by the difference in their styles of the image texture. The algorithm is tested on the dataset of the Airbus Ship Detection Challenge on Kaggle. Compared to the other water surface object detection algorithms, the proposed algorithm has a good precision of 0.925 with recall equals to 0.86.
2022-02-09
Buccafurri, Francesco, Angelis, Vincenzo De, Francesca Idone, Maria, Labrini, Cecilia.  2021.  WIP: An Onion-Based Routing Protocol Strengthening Anonymity. 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). :231–235.
Anonymous Communication Networks (ACNs) are networks in which, beyond data confidentiality, also traffic flow confidentiality is provided. The most popular routing approach for ACNs also used in practice is Onion. Onion is based on multiple encryption wrapping combined with the proxy mechanism (relay nodes). However, it offers neither sender anonymity nor recipient anonymity in a global passive adversary model, simply because the adversary can observe (at the first relay node) the traffic coming from the sender, and (at the last relay node) the traffic delivered to the recipient. This may also cause a loss of relationship anonymity if timing attacks are performed. This paper presents Onion-Ring, a routing protocol that improves anonymity of Onion in the global adversary model, by achieving sender anonymity and recipient anonymity, and thus relationship anonymity.
2022-02-07
Wang, Shuwei, Wang, Qiuyun, Jiang, Zhengwei, Wang, Xuren, Jing, Rongqi.  2021.  A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification. 2020 25th International Conference on Pattern Recognition (ICPR). :3775–3782.
Malware classification helps to understand its purpose and is also an important part of attack detection. And it is also an important part of discovering attacks. Due to continuous innovation and development of artificial intelligence, it is a trend to combine deep learning with malware classification. In this paper, we propose an improved malware image rescaling algorithm (IMIR) based on local mean algorithm. Its main goal of IMIR is to reduce the loss of information from samples during the process of converting binary files to image files. Therefore, we construct a neural network structure based on VGG model, which is suitable for image classification. In the real world, a mass of malware family labels are inaccurate or lacking. To deal with this situation, we propose a novel method to train the deep neural network by Semi-supervised Generative Adversarial Network (SGAN), which only needs a small amount of malware that have accurate labels about families. By integrating SGAN with weak coupling, we can retain the weak links of supervised part and unsupervised part of SGAN. It improves the accuracy of malware classification by making classifiers more independent of discriminators. The results of experimental demonstrate that our model achieves exhibiting favorable performance. The recalls of each family in our data set are all higher than 93.75%.
2022-02-03
Goerke, Niklas, Timmermann, David, Baumgart, Ingmar.  2021.  Who Controls Your Robot? An Evaluation of ROS Security Mechanisms 2021 7th International Conference on Automation, Robotics and Applications (ICARA). :60—66.
The Robot Operation System (ROS) is widely used in academia as well as the industry to build custom robot applications. Successful cyberattacks on robots can result in a loss of control for the legitimate operator and thus have a severe impact on safety if the robot is moving uncontrollably. A high level of security thus needs to be mandatory. Neither ROS 1 nor 2 in their default configuration provide protection against network based attackers. Multiple protection mechanisms have been proposed that can be used to overcome this. Unfortunately, it is unclear how effective and usable each of them are. We provide a structured analysis of the requirements these protection mechanisms need to fulfill by identifying realistic, network based attacker models and using those to derive relevant security requirements and other evaluation criteria. Based on these criteria, we analyze the protection mechanisms available and compare them to each other. We find that none of the existing protection mechanisms fulfill all of the security requirements. For both ROS 1 and 2, we discuss which protection mechanism are most relevant and give hints on how to decide on one. We hope that the requirements we identify simplify the development or enhancement of protection mechanisms that cover all aspects of ROS and that our comparison helps robot operators to choose an adequate protection mechanism for their use case.
Rani, V. Usha, Sridevi, J, Sai, P. Mohan.  2021.  Web Controlled Raspberry Pi Robot Surveillance. 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). :1—5.
Security is a major thing to focus on during this modern era as it is very important to secure your surroundings for the well being of oneself and his family, But there are many drawbacks of using conventional security surveillance cameras as they have to be set in a particular angle for good visual and they do not cover a large area, conventional security cameras can only be used from a particular device and cannot alert the user during an unforeseen circumstance. Hence we require a much more efficient device for better security a web controlled surveillance robot is much more practical device to be used compared to conventional security surveillance, this system needs a single camera to perform its operation and the user can monitor a wide range of area, any device with a wireless connection to the internet can be used to operate this device. This robot can move to any location within the range of the network and can be accessed globally from anywhere and as it uses only one camera to secure a large area it is also cost-efficient. At the core of the system lies Raspberry-pi which is responsible for all the operation of the system and the size of the device can be engineered according to the area it is to be used.
2022-01-31
Gurjar, Neelam Singh, S R, Sudheendra S, Kumar, Chejarla Santosh, K. S, Krishnaveni.  2021.  WebSecAsst - A Machine Learning based Chrome Extension. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :1631—1635.
A browser extension, also known as a plugin or an addon, is a small software application that adds functionality to a web browser. However, security threats are always linked with such software where data can be compromised and ultimately trust is broken. The proposed research work jas developed a security model named WebSecAsst, which is a chrome plugin relying on the Machine Learning model XGBoost and VirusTotal to detect malicious websites visited by the user and to detect whether the files downloaded from the internet are Malicious or Safe. During this detection, the proposed model preserves the privacy of the user's data to a greater extent than the existing commercial chrome extensions.
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna, Ali, Waleed.  2021.  Web Caching Strategy Optimization Based on Ant Colony Optimization and Genetic Algorithm. 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). :75—81.
Web caching is a strategy that can be used to speed up website access on the client-side. This strategy is implemented by storing as many popular web objects as possible on the cache server. All web objects stored on a cache server are called cached data. Requests for cached web data on the cache server are much faster than requests directly to the origin server. Not all web objects can fit on the cache server due to their limited capacity. Therefore, optimizing cached data in a web caching strategy will determine which web objects can enter the cache server to have maximum profit. This paper simulates a web caching strategy optimization with a knapsack problem approach using the Ant Colony optimization (ACO), Genetic Algorithm (GA), and a combination of the two. Knapsack profit is seen from the number of web objects that can be entered into the cache server but with the minimum objective function value. The simulation results show that the combination of ACO and GA is faster to produce an optimal solution and is not easily trapped by the local optimum.
Shivaie, Mojtaba, Mokhayeri, Mohammad, Narooie, Mohammadali, Ansari, Meisam.  2021.  A White-Box Decision Tree-Based Preventive Strategy for Real-Time Islanding Detection Using Wide-Area Phasor Measurement. 2021 IEEE Texas Power and Energy Conference (TPEC). :1–6.
With the ever-increasing energy demand and enormous development of generation capacity, modern bulk power systems are mostly pushed to operate with narrower security boundaries. Therefore, timely and reliable assessment of power system security is an inevitable necessity to prevent widespread blackouts and cascading outages. In this paper, a new white-box decision tree-based preventive strategy is presented to evaluate and enhance the power system dynamic security versus the credible N-K contingencies originating from transient instabilities. As well, a competent operating measure is expertly defined to detect and identify the islanding and non-islanding conditions with the aid of a wide-area phasor measurement system. The newly developed strategy is outlined by a three-level simulation with the aim of guaranteeing the power system dynamic security. In the first-level, six hundred islanding and non-islanding scenarios are generated using an enhanced version of the ID3 algorithm, referred to as the C4.5 algorithms. In the second-level, optimal C4.5 decision trees are offline trained based on operating parameters achieved by the reduction error pruning method. In the third level, however, all trained decision trees are rigorously investigated offline and online; and then, the most accurate and reliable decision tree is selected. The newly developed strategy is examined on the IEEE New England 39-bus test system, and its effectiveness is assured by simulation studies.
Velez, Miguel, Jamshidi, Pooyan, Siegmund, Norbert, Apel, Sven, Kästner, Christian.  2021.  White-Box Analysis over Machine Learning: Modeling Performance of Configurable Systems. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1072–1084.

Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.

2021-12-21
He, Zhangying, Miari, Tahereh, Makrani, Hosein Mohammadi, Aliasgari, Mehrdad, Homayoun, Houman, Sayadi, Hossein.  2021.  When Machine Learning Meets Hardware Cybersecurity: Delving into Accurate Zero-Day Malware Detection. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :85–90.
Cybersecurity for the past decades has been in the front line of global attention as a critical threat to the information technology infrastructures. According to recent security reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers as well as harmful purposes to compromise security of computing systems. To address the high complexity and computational overheads of conventional software-based detection techniques, Hardware-Supported Malware Detection (HMD) has proved to be efficient for detecting malware at the processors' microarchitecture level with the aid of Machine Learning (ML) techniques applied on Hardware Performance Counter (HPC) data. Existing ML-based HMDs while accurate in recognizing known signatures of malicious patterns, have not explored detecting unknown (zero-day) malware data at run-time which is a more challenging problem, since its HPC data does not match any known attack applications' signatures in the existing database. In this work, we first present a review of recent ML-based HMDs utilizing built-in HPC registers information. Next, we examine the suitability of various standard ML classifiers for zero-day malware detection and demonstrate that such methods are not capable of detecting unknown malware signatures with high detection rate. Lastly, to address the challenge of run-time zero-day malware detection, we propose an ensemble learning-based technique to enhance the performance of the standard malware detectors despite using a small number of microarchitectural features that are captured at run-time by existing HPCs. The experimental results demonstrate that our proposed approach by applying AdaBoost ensemble learning on Random Forrest classifier as a regular classifier achieves 92% F-measure and 95% TPR with only 2% false positive rate in detecting zero-day malware using only the top 4 microarchitectural features.
2021-12-20
Ma, Chiyuan, Zuo, Yi, CHEN, C.L.Philip, Li, Tieshan.  2021.  A Weight-Adaptive Algorithm of Multi Feature Fusion Based on Kernel Correlation Filtering for Target Tracking. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :274–279.
In most correlation filter target tracking algorithms, poor accuracy in the tracking process for complex field images of the target and scale change problems. To address these issues, this paper proposes an algorithm of adaptive multi-feature fusion with scale change correlation filtering tracking. Our algorithm is based on the rapid and simple Kernel-Correlated Filtering(K CF) tracker, and achieves the complementarity among image features by fusing multiple features of Color Nmae(CN), Histogram of Oriented Gradient(HOG) and Local Binary Pattern(LBP) with weights adjusted by visual evaluation functions. The proposed algorithm introduces scale pooling and bilinear interpolation to adjust the target template size. Experiments on the OTB-2015 dataset of 100 video frames are compared with several trackers, and the precision and success ratio of our algorithm on complex scene tracking problems are 17.7% and 32.1 % respectively compared to the based-KCF.
Shen, Cheng, Liu, Tian, Huang, Jun, Tan, Rui.  2021.  When LoRa Meets EMR: Electromagnetic Covert Channels Can Be Super Resilient. 2021 IEEE Symposium on Security and Privacy (SP). :1304–1317.
Due to the low power of electromagnetic radiation (EMR), EM convert channel has been widely considered as a short-range attack that can be easily mitigated by shielding. This paper overturns this common belief by demonstrating how covert EM signals leaked from typical laptops, desktops and servers are decoded from hundreds of meters away, or penetrate aggressive shield previously considered as sufficient to ensure emission security. We achieve this by designing EMLoRa – a super resilient EM covert channel that exploits memory as a LoRa-like radio. EMLoRa represents the first attempt of designing an EM covert channel using state-of-the-art spread spectrum technology. It tackles a set of unique challenges, such as handling complex spectral characteristics of EMR, tolerating signal distortions caused by CPU contention, and preventing adversarial detectors from demodulating covert signals. Experiment results show that EMLoRa boosts communication range by 20x and improves attenuation resilience by up to 53 dB when compared with prior EM covert channels at the same bit rate. By achieving this, EMLoRa allows an attacker to circumvent security perimeter, breach Faraday cage, and localize air-gapped devices in a wide area using just a small number of inexpensive sensors. To countermeasure EMLoRa, we further explore the feasibility of uncovering EMLoRa's signal using energy- and CNN-based detectors. Experiments show that both detectors suffer limited range, allowing EMLoRa to gain a significant range advantage. Our results call for further research on the countermeasure against spread spectrum-based EM covert channels.