Visible to the public Crowd-Empowered Privacy-Preserving Data Aggregation for Mobile Crowdsensing

TitleCrowd-Empowered Privacy-Preserving Data Aggregation for Mobile Crowdsensing
Publication TypeConference Paper
Year of Publication2018
AuthorsYang, Lei, Zhang, Mengyuan, He, Shibo, Li, Ming, Zhang, Junshan
Conference NameProceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing
PublisherACM
Conference LocationNew York, NY, USA
ISBN Number978-1-4503-5770-8
Keywordscrowd sensing, data aggregation, game theoretic security, human factors, incentive mechanism, Predictive Metrics, Privacy-preserving, pubcrawl, Scalability
AbstractWe develop an auction framework for privacy-preserving data aggregation in mobile crowdsensing, where the platform plays the role as an auctioneer to recruit workers for a sensing task. In this framework, the workers are allowed to report privacy-preserving versions of their data to protect their data privacy; and the platform selects workers based on their sensing capabilities, which aims to address the drawbacks of game-theoretic models that cannot ensure the accuracy level of the aggregated result, due to the existence of multiple Nash Equilibria. Observe that in this auction based framework, there exists externalities among workers' data privacy, because the data privacy of each worker depends on both her injected noise and the total noise in the aggregated result that is intimately related to which workers are selected to fulfill the task. To achieve a desirable accuracy level of the data aggregation in a cost-effective manner, we explicitly characterize the externalities, i.e., the impact of the noise added by each worker on both the data privacy and the accuracy of the aggregated result. Further, we explore the problem structure, characterize the hidden monotonicity property of the problem, and determine the critical bid of workers, which makes it possible to design a truthful, individually rational and computationally efficient incentive mechanism. The proposed incentive mechanism can recruit a set of workers to approximately minimize the cost of purchasing private sensing data from workers subject to the accuracy requirement of the aggregated result. We validate the proposed scheme through theoretical analysis as well as extensive simulations.
URLhttp://doi.acm.org/10.1145/3209582.3209598
DOI10.1145/3209582.3209598
Citation Keyyang_crowd-empowered_2018