An Efficient Low Complexity Edge-Cloud Framework for Security in IoT Networks
Title | An Efficient Low Complexity Edge-Cloud Framework for Security in IoT Networks |
Publication Type | Conference Paper |
Year of Publication | 2021 |
Authors | Huong, Truong Thu, Bac, Ta Phuong, Long, Dao Minh, Thang, Bui Doan, Luong, Tran Duc, Binh, Nguyen Thanh |
Conference Name | 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE) |
Date Published | Jan. 2021 |
Publisher | IEEE |
ISBN Number | 978-1-7281-5471-8 |
Keywords | Artificial neural networks, Complexity theory, composability, edge detection, Feature Processing, Image edge detection, Internet of Things, Metrics, Multi-class detection, pubcrawl, resilience, Resiliency, Scalability, security, Support vector machines, Task Analysis |
Abstract | Internet of Things (IoT) and its applications are becoming commonplace with more devices, but always at risk of network security. It is therefore crucial for an IoT network design to identify attackers accurately, quickly and promptly. Many solutions have been proposed, mainly concerning secure IoT architectures and classification algorithms, but none of them have paid enough attention to reducing the complexity. Our proposal in this paper is an edge-cloud architecture that fulfills the detection task right at the edge layer, near the source of the attacks for quick response, versatility, as well as reducing the cloud's workload. We also propose a multi-attack detection mechanism called LCHA (Low-Complexity detection solution with High Accuracy) , which has low complexity for deployment at the edge zone while still maintaining high accuracy. The performance of our proposed mechanism is compared with that of other machine learning and deep learning methods using the most updated BoT-IoT data set. The results show that LCHA outperforms other algorithms such as NN, CNN, RNN, KNN, SVM, KNN, RF and Decision Tree in terms of accuracy and NN in terms of complexity. |
URL | https://ieeexplore.ieee.org/document/9352046 |
DOI | 10.1109/ICCE48956.2021.9352046 |
Citation Key | huong_efficient_2021 |