1329422

file

Visible to the public Digital Control of Hybrid Systems via Simulation and Bisimulation

Abstract:

The research objective of this project is to bridge two disparate paths to the control of hybrid dynamical systems--namely, symbolic model-based and Lyapunov analysis-based approaches--via convex programming in order to address major challenges in hybrid control. The primary goal is to establish nonconservative, robust, and scalable control theories and algorithms for verifying/achieving desired stability and performance bounds for hybrid affine systems.

file

Visible to the public Digital Control of Hybrid Systems via Simulation and Bisimulation

Abstract:

The research objective of this project is to bridge two disparate paths to the control of hybrid dynamical systems--namely, symbolic model-based and Lyapunov analysis-based approaches--via convex programming in order to address major challenges in hybrid control. Hybrid systems are characterized by the presence of both continuous dynamics and discrete logic that interact with each other.

file

Visible to the public Digital Control of Hybrid Systems via Simulation and Bisimulation

Abstract:

A hybrid system is a dynamical model that describes the coupled evolution of both continuous- valued variables and discrete patterns. A prime example of such a system is a power electronic circuit, where the semiconductor transistors behave as ideal switches whose switching actions effectively change the circuit topology (i.e., the discrete pattern) that in turn defines the dynamics of currents and voltages (i.e., the continuous variables) and hence the switching actions.